Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from peft import PeftModel | |
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-MT/polylm-1.7b") | |
model = PeftModel.from_pretrained(model, "fadliaulawi/polylm-1.7b-finetuned") | |
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-MT/polylm-1.7b",use_fast = False) | |
def user(message, history): | |
return "", history + [[message, None]] | |
def bot(history,temperature, max_length, top_p,top_k): | |
user_message = history[-1][0] | |
new_user_input_ids = tokenizer.encode( | |
user_message + tokenizer.eos_token, return_tensors="pt" | |
) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1) | |
# generate a response | |
response = model.generate( | |
input_ids=bot_input_ids, | |
pad_token_id=tokenizer.eos_token_id, | |
temperature = float(temperature), | |
max_length=max_length, | |
top_p=float(top_p), | |
top_k=top_k, | |
do_sample=True | |
).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(response[0]).split("<|endoftext|>") | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] # convert to tuples of list | |
history[-1] = response[0] | |
return history | |
with gr.Blocks() as demo: | |
temperature = gr.Slider(0, 5, value=0.8, step=0.1, label='Temperature') | |
max_length = gr.Slider(0, 8192, value=256, step=1, label='Max Length') | |
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label='Top P') | |
top_k = gr.Slider(0, 50, value=50, step=1, label='Top K') | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
examples = gr.Examples(examples=["Dokter aku sakit flu dan pilek. Apa yang terjadi denganku?"],inputs=[msg]) | |
#submit.click(bot,[msg,chatbot,temperature, max_length, top_p,top_k],chatbot) | |
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot,temperature,max_length,top_p,top_k], chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue().launch() |