Spaces:
Sleeping
Sleeping
create the file
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
model_name="fadliaulawi/polylm-1.7b-finetuned"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
|
10 |
+
def user(message, history):
|
11 |
+
return "", history + [[message, None]]
|
12 |
+
|
13 |
+
|
14 |
+
def bot(history,temperature, max_length, top_p,top_k):
|
15 |
+
user_message = history[-1][0]
|
16 |
+
new_user_input_ids = tokenizer.encode(
|
17 |
+
user_message + tokenizer.eos_token, return_tensors="pt"
|
18 |
+
)
|
19 |
+
|
20 |
+
# append the new user input tokens to the chat history
|
21 |
+
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)
|
22 |
+
|
23 |
+
# generate a response
|
24 |
+
response = model.generate(
|
25 |
+
bot_input_ids,
|
26 |
+
pad_token_id=tokenizer.eos_token_id,
|
27 |
+
temperature = float(temperature),
|
28 |
+
max_length=max_length,
|
29 |
+
top_p=float(top_p),
|
30 |
+
top_k=top_k,
|
31 |
+
do_sample=True
|
32 |
+
).tolist()
|
33 |
+
|
34 |
+
# convert the tokens to text, and then split the responses into lines
|
35 |
+
response = tokenizer.decode(response[0]).split("<|endoftext|>")
|
36 |
+
response = [
|
37 |
+
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
38 |
+
] # convert to tuples of list
|
39 |
+
history[-1] = response[0]
|
40 |
+
return history
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
temperature = gr.Slider(0, 5, value=0.8, step=0.1, label='Temperature')
|
45 |
+
max_length = gr.Slider(0, 8192, value=256, step=1, label='Max Length')
|
46 |
+
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label='Top P')
|
47 |
+
top_k = gr.Slider(0, 50, value=50, step=1, label='Top K')
|
48 |
+
|
49 |
+
chatbot = gr.Chatbot()
|
50 |
+
msg = gr.Textbox()
|
51 |
+
submit = gr.Button("Submit")
|
52 |
+
clear = gr.Button("Clear")
|
53 |
+
|
54 |
+
examples = gr.Examples(examples=["Hi Doctor"],inputs=[msg])
|
55 |
+
|
56 |
+
#submit.click(bot,[msg,chatbot,temperature, max_length, top_p,top_k],chatbot)
|
57 |
+
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
58 |
+
bot, [chatbot,temperature,max_length,top_p,top_k], chatbot
|
59 |
+
)
|
60 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
61 |
+
|
62 |
+
demo.launch()
|