File size: 6,239 Bytes
87cc80e
297a2c6
87cc80e
297a2c6
ce7d026
 
a74d399
7d58aac
c1a75f1
297a2c6
87cc80e
297a2c6
87cc80e
 
 
297a2c6
 
7d58aac
 
 
 
 
297a2c6
 
a74d399
7d58aac
 
87cc80e
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7d026
87cc80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d58aac
 
 
 
 
 
 
 
 
 
ce7d026
87cc80e
 
ce7d026
 
718b31c
 
ce7d026
87cc80e
ce7d026
718b31c
ce7d026
87cc80e
 
297a2c6
87cc80e
 
c992a7d
87cc80e
2c654db
 
 
 
 
 
 
297a2c6
c1a75f1
a74d399
c992a7d
a74d399
 
 
c1a75f1
a74d399
297a2c6
7d58aac
87cc80e
 
 
 
 
 
 
 
 
 
 
297a2c6
 
7d58aac
297a2c6
4765a1d
 
297a2c6
 
87cc80e
 
 
c1a75f1
 
718b31c
87cc80e
a74d399
87cc80e
 
297a2c6
 
 
 
 
 
 
779dfc3
87cc80e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from sahi import utils, predict, AutoDetectionModel
from PIL import Image
import gradio as gr
import numpy
import torch

model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1', 'kadirnar/UNet-EfficientNet-b6-Istanbul']
current_device = "cuda" if torch.cuda.is_available() else "cpu"
model_types = ["YOLOv5", "YOLOv5 + SAHI", "YOLOv8", "YOLOv7"]

def sahi_yolov5_inference(
    image,
    model_id,
    model_type,
    image_size,
    slice_height=512,
    slice_width=512,
    overlap_height_ratio=0.1,
    overlap_width_ratio=0.1,
    postprocess_type="NMS",
    postprocess_match_metric="IOU",
    postprocess_match_threshold=0.25,
    postprocess_class_agnostic=False,
):
    
    rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1)
    text_th = None or max(rect_th - 2, 1)
    
    if model_type == "YOLOv5":
        # standard inference
        model = AutoDetectionModel.from_pretrained(
            model_type="yolov5",
            model_path=model_id,
            device=current_device,
            confidence_threshold=0.5,
            image_size=image_size,
            )
        
        prediction_result_1 = predict.get_prediction(
            image=image, detection_model=model
        )

        visual_result_1 = utils.cv.visualize_object_predictions(
            image=numpy.array(image),
            object_prediction_list=prediction_result_1.object_prediction_list,
            rect_th=rect_th,
            text_th=text_th,
        )
        
        output = Image.fromarray(visual_result_1["image"])
        return output
    
    elif model_type == "YOLOv5 + SAHI":
        model = AutoDetectionModel.from_pretrained(
            model_type="yolov5",
            model_path=model_id,
            device=current_device,
            confidence_threshold=0.5,
            image_size=image_size,
        )
        
        prediction_result_2 = predict.get_sliced_prediction(
            image=image,
            detection_model=model,
            slice_height=int(slice_height),
            slice_width=int(slice_width),
            overlap_height_ratio=overlap_height_ratio,
            overlap_width_ratio=overlap_width_ratio,
            postprocess_type=postprocess_type,
            postprocess_match_metric=postprocess_match_metric,
            postprocess_match_threshold=postprocess_match_threshold,
            postprocess_class_agnostic=postprocess_class_agnostic,
        )
        
        visual_result_2 = utils.cv.visualize_object_predictions(
            image=numpy.array(image),
            object_prediction_list=prediction_result_2.object_prediction_list,
            rect_th=rect_th,
            text_th=text_th,
        )
        
        output = Image.fromarray(visual_result_2["image"])
        return output

    elif model_type == "YOLOv8":
        from ultralyticsplus import YOLO, render_result

        model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
        result = model.predict(image, imgsz=image_size)[0]
        render = render_result(model=model, image=image, result=result)
        return render
    
    elif model_type == "YOLOv7":
        import yolov7
        
        model = yolov7.load(model_id, device="cuda:0", hf_model=True, trace=False)
        results = model([image], size=image_size)
        return results.render()[0]

    """
    elif model_type == "Unet-Istanbul":
        from istanbul_unet import unet_prediction
        
        output = unet_prediction(input_path=image, model_path=model_id)
        return output
    """
    
inputs = [
    gr.Image(type="pil", label="Original Image"),
    gr.Dropdown(choices=model_id_list,label="Choose Model",value=model_id_list[0]),
    gr.Dropdown( choices=model_types, label="Choose Model Type", value=model_types[1]),
    gr.Slider(minimum=128, maximum=2048, value=640, step=32, label="Image Size"),
    gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Height"),
    gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Width"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Height Ratio"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Width Ratio"),
    gr.Dropdown(["NMS", "GREEDYNMM"], type="value", value="NMS", label="Postprocess Type"),
    gr.Dropdown(["IOU", "IOS"], type="value", value="IOU", label="Postprocess Type"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.1, label="Postprocess Match Threshold"),
    gr.Checkbox(value=True, label="Postprocess Class Agnostic"),
]

outputs = [gr.outputs.Image(type="pil", label="Output")]

title = "Building Detection from Satellite Images with SAHI + YOLOv5"
description = "SAHI + YOLOv5 demo for building detection from satellite images. Upload an image or click an example image to use."
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>"
examples = [
    ["data/26.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
    ["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
    ["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
    ["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False]
    #["data/Istanbul.jpg", 'kadirnar/UNet-EfficientNet-b6-Istanbul', "Unet-Istanbul", 512, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
]


demo = gr.Interface(
    sahi_yolov5_inference,
    inputs,
    outputs,
    title=title,
    description=description,
    article=article,
    examples=examples,
    theme="huggingface",
    cache_examples=True,
)

demo.launch(debug=True, enable_queue=True)