Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,508 Bytes
55ac26c 19adaee 55ac26c bddb8a1 55ac26c bddb8a1 55ac26c 31acc4c 6596772 9ee2acc 55ac26c 864aa62 55ac26c 21e4f98 55ac26c bddb8a1 55ac26c bddb8a1 55ac26c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import gradio as gr
import gc
import numpy as np
import os
import torch
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download
examples = [
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280],
['assets/example_videos/obj_1.mp4', -1, -1, 1280],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280],
]
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder='vitl'
model_name = encoder2name[encoder]
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model")
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything"
description = """Official demo for **Video Depth Anything**.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
@spaces.GPU(duration=240)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
output_dir: str = './outputs',
input_size: int = 518,
):
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
video_name = os.path.basename(input_video)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4')
save_video(frames, processed_video_path, fps=fps)
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
# with gr.Tab(label="Output"):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(
label="Preprocessed video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
depth_vis_video = gr.Video(
label="Generated Depth Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(
label="max process length",
minimum=-1,
maximum=1000,
value=-1,
step=1,
)
target_fps = gr.Slider(
label="target FPS",
minimum=-1,
maximum=30,
value=15,
step=1,
)
max_res = gr.Slider(
label="max side resolution",
minimum=480,
maximum=1920,
value=1280,
step=1,
)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[
input_video,
max_len,
target_fps,
max_res
],
outputs=[processed_video, depth_vis_video],
fn=infer_video_depth,
cache_examples="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[
input_video,
max_len,
target_fps,
max_res
],
outputs=[processed_video, depth_vis_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue()
demo.launch(share=True) |