Spaces:
Runtime error
Runtime error
File size: 954 Bytes
dc648ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import torch
import torchvision
import torch.nn as nn
def create_effnetb2_model(num_classes: int = 3,
seed: int =42):
# 1. Setup pretrained EffNetB2 weights
effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT # DEFAULT = best available weights.
# 2. Get EffNetB2 transforms
effnetb2_transforms = effnetb2_weights.transforms()
# 3. Setup pretrained model instance
effnetb2 = torchvision.models.efficientnet_b2(weights = effnetb2_weights)
# 4. Freeze the base layers
for param in effnetb2.parameters():
param.requires_grad = False
# 5. Change classifier head with random seed for reproducibility.
torch.manual_seed(seed)
effnetb2.classifier = nn.Sequential(
nn.Dropout(p = 0.3, inplace = True),
nn.Linear(in_features = 1408, out_features = num_classes, bias = True)
)
return effnetb2, effnetb2_transforms
|