import os import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ hf_token = os.getenv("user_token") client = InferenceClient("Qwen/Qwen2.5-Coder-3B-Instruct", token=hf_token) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="""Your task is to convert a question into a SQL query, given a Postgres database schema. Adhere to these rules: - Use Table Aliases to prevent ambiguity. - When creating a ratio, always cast the numerator as float. - Only use tables and fields explicitly defined in the provided schema. Do not include or reference any tables or fields not listed. - If the required query cannot be constructed using the provided schema, return the string `NOT FOUND`. ### Input: Generate a SQL query that answers the question `{question}`. This query will run on a database whose schema is represented in this string: CREATE TABLE products ( product_id INTEGER PRIMARY KEY, -- Unique ID for each product name VARCHAR(50), -- Name of the product price DECIMAL(10,2), -- Price of each unit of the product quantity INTEGER -- Current quantity in stock ); CREATE TABLE customers ( customer_id INTEGER PRIMARY KEY, -- Unique ID for each customer name VARCHAR(50), -- Name of the customer address VARCHAR(100) -- Mailing address of the customer ); CREATE TABLE salespeople ( salesperson_id INTEGER PRIMARY KEY, -- Unique ID for each salesperson name VARCHAR(50), -- Name of the salesperson region VARCHAR(50) -- Geographic sales region ); CREATE TABLE sales ( sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold ); CREATE TABLE product_suppliers ( supplier_id INTEGER PRIMARY KEY, -- Unique ID for each supplier product_id INTEGER, -- Product ID supplied supply_price DECIMAL(10,2) -- Unit price charged by supplier ); -- sales.product_id can be joined with products.product_id -- sales.customer_id can be joined with customers.customer_id -- sales.salesperson_id can be joined with salespeople.salesperson_id -- product_suppliers.product_id can be joined with products.product_id ### Response: ```sql""", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()