|
from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification |
|
from PIL import Image |
|
|
|
|
|
model_folder = "mobilnetV2_ftprecmodelshuf.weights.best.hdf5" |
|
|
|
|
|
feature_extractor = MobileNetV2FeatureExtractor.from_pretrained(model_folder) |
|
|
|
|
|
model = MobileNetV2ForImageClassification.from_pretrained(model_folder) |
|
|
|
|
|
image = Image.open("/path/to/your/image.jpg") |
|
|
|
|
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
|
|
|
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
|
|
predicted_class_idx = logits.argmax(-1).item() |
|
print("Predicted class:", model.config.id2label[predicted_class_idx]) |
|
|