from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification from PIL import Image # Replace with the path to the directory containing the model files model_folder = "mobilnetV2_ftprecmodelshuf.weights.best.hdf5" # Load the feature extractor feature_extractor = MobileNetV2FeatureExtractor.from_pretrained(model_folder) # Load the model model = MobileNetV2ForImageClassification.from_pretrained(model_folder) # Load the image image = Image.open("/path/to/your/image.jpg") # Preprocess the image inputs = feature_extractor(images=image, return_tensors="pt") # Make predictions outputs = model(**inputs) logits = outputs.logits # Model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])