Spaces:
Sleeping
Sleeping
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import YOLO | |
model = YOLO('yolov8n.pt') | |
def predict_image(img, conf_threshold, iou_threshold): | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title="Chicken Disease Classification from Droppings: An AI-Powered Diagnostic Tool", | |
description="Upload images of chicken droppings for Diagnosis.", | |
examples=[ | |
["cocci.587.jpg", 0.25, 0.45], | |
["ncd2.jpg", 0.25, 0.45], | |
], | |
) | |
if __name__ == "__main__": | |
iface.launch() | |