Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,194 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("mistralai/Pixtral-Large-Instruct-2411")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import base64
|
4 |
+
import io
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
|
8 |
+
# Inicializaci贸n del cliente de inferencia con el modelo especificado
|
|
|
|
|
9 |
client = InferenceClient("mistralai/Pixtral-Large-Instruct-2411")
|
10 |
|
11 |
+
def image_to_base64(image_path):
|
12 |
+
"""Convert an image file to a base64 string."""
|
13 |
+
with open(image_path, "rb") as image_file:
|
14 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
15 |
+
return encoded_string
|
16 |
|
17 |
+
def base64_to_image(base64_string):
|
18 |
+
"""Convert a base64 string to an image."""
|
19 |
+
image_data = base64.b64decode(base64_string)
|
20 |
+
image = Image.open(io.BytesIO(image_data))
|
21 |
+
return image
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
def describe_image(image, system_message, max_tokens, temperature, top_p):
|
24 |
+
"""Describe an image using the model."""
|
25 |
+
if image is None:
|
26 |
+
return "No image uploaded.", []
|
|
|
27 |
|
28 |
+
# Convert image to base64
|
29 |
+
buffered = io.BytesIO()
|
30 |
+
image.save(buffered, format="JPEG")
|
31 |
+
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
32 |
|
33 |
+
messages = [
|
34 |
+
{"role": "system", "content": system_message},
|
35 |
+
{"role": "user", "content": "Describe the following image:"},
|
36 |
+
{"role": "user", "content": image_base64}
|
37 |
+
]
|
38 |
|
39 |
+
response = ""
|
40 |
+
for chunk in client.chat_completion(
|
41 |
messages,
|
42 |
max_tokens=max_tokens,
|
43 |
stream=True,
|
44 |
temperature=temperature,
|
45 |
top_p=top_p,
|
46 |
):
|
47 |
+
token = chunk.choices[0].delta.content
|
|
|
48 |
response += token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
return response, [(f"User: Describe the following image:", response)]
|
51 |
+
|
52 |
+
def respond(
|
53 |
+
user_message: str,
|
54 |
+
chat_history: list[tuple[str, str]],
|
55 |
+
system_message: str,
|
56 |
+
max_tokens: int,
|
57 |
+
temperature: float,
|
58 |
+
top_p: float,
|
59 |
+
) -> str:
|
60 |
+
"""
|
61 |
+
Funci贸n para generar respuestas basadas en el historial de chat y par谩metros de configuraci贸n.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
user_message (str): Mensaje del usuario.
|
65 |
+
chat_history (list[tuple[str, str]]): Historial de chat.
|
66 |
+
system_message (str): Mensaje del sistema que define el comportamiento del chatbot.
|
67 |
+
max_tokens (int): M谩ximo n煤mero de tokens a generar.
|
68 |
+
temperature (float): Temperatura para el muestreo de texto.
|
69 |
+
top_p (float): Par谩metro top-p para el muestreo de texto.
|
70 |
+
|
71 |
+
Yields:
|
72 |
+
str: Respuesta generada por el modelo.
|
73 |
+
"""
|
74 |
+
# Construcci贸n de la lista de mensajes
|
75 |
+
messages = [{"role": "system", "content": system_message}]
|
76 |
+
for user_msg, assistant_msg in chat_history:
|
77 |
+
if user_msg:
|
78 |
+
messages.append({"role": "user", "content": user_msg})
|
79 |
+
if assistant_msg:
|
80 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
81 |
+
messages.append({"role": "user", "content": user_message})
|
82 |
+
|
83 |
+
response = ""
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Obtenci贸n de la respuesta del modelo
|
87 |
+
for chunk in client.chat_completion(
|
88 |
+
messages,
|
89 |
+
max_tokens=max_tokens,
|
90 |
+
stream=True,
|
91 |
+
temperature=temperature,
|
92 |
+
top_p=top_p,
|
93 |
+
):
|
94 |
+
token = chunk.choices[0].delta.content
|
95 |
+
response += token
|
96 |
+
yield response
|
97 |
+
except Exception as e:
|
98 |
+
yield f"Error al obtener respuesta: {str(e)}"
|
99 |
+
|
100 |
+
def main():
|
101 |
+
"""
|
102 |
+
Funci贸n principal para iniciar la interfaz de chat.
|
103 |
+
"""
|
104 |
+
def update_chat(user_message, image, chat_history, system_message, max_tokens, temperature, top_p):
|
105 |
+
if image is not None:
|
106 |
+
description, new_history = describe_image(image, system_message, max_tokens, temperature, top_p)
|
107 |
+
chat_history.extend(new_history)
|
108 |
+
user_message = description
|
109 |
+
if user_message:
|
110 |
+
response_generator = respond(
|
111 |
+
user_message,
|
112 |
+
chat_history,
|
113 |
+
system_message,
|
114 |
+
max_tokens,
|
115 |
+
temperature,
|
116 |
+
top_p,
|
117 |
+
)
|
118 |
+
for response in response_generator:
|
119 |
+
chat_history.append((user_message, response))
|
120 |
+
yield "", chat_history, chat_history
|
121 |
+
else:
|
122 |
+
yield "", chat_history, chat_history
|
123 |
+
|
124 |
+
with gr.Blocks(title="Chatbot con MistralAI", theme=gr.themes.Soft()) as demo:
|
125 |
+
gr.Markdown("# Chatbot con MistralAI")
|
126 |
+
gr.Markdown("Un chatbot amigable basado en el modelo MistralAI Pixtral-Large-Instruct-2411 que puede describir im谩genes y mantener un historial de chat.")
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column(scale=3):
|
130 |
+
chatbot = gr.Chatbot(label="Conversaci贸n")
|
131 |
+
user_message = gr.Textbox(label="Mensaje del Usuario", placeholder="Escribe tu mensaje aqu铆...")
|
132 |
+
with gr.Row():
|
133 |
+
submit_button = gr.Button("Enviar")
|
134 |
+
clear_button = gr.Button("Limpiar")
|
135 |
+
|
136 |
+
with gr.Column(scale=2):
|
137 |
+
image_input = gr.Image(label="Cargar Imagen", type="pil")
|
138 |
+
image_description = gr.Textbox(label="Descripci贸n de la Imagen", interactive=False)
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
system_message = gr.Textbox(
|
142 |
+
value="You are a friendly Chatbot.",
|
143 |
+
label="Mensaje del Sistema",
|
144 |
+
placeholder="Define el comportamiento del chatbot."
|
145 |
+
)
|
146 |
+
max_tokens = gr.Slider(
|
147 |
+
minimum=1,
|
148 |
+
maximum=2048,
|
149 |
+
value=512,
|
150 |
+
step=1,
|
151 |
+
label="Max New Tokens",
|
152 |
+
info="M谩ximo n煤mero de tokens generados."
|
153 |
+
)
|
154 |
+
temperature = gr.Slider(
|
155 |
+
minimum=0.1,
|
156 |
+
maximum=4.0,
|
157 |
+
value=0.7,
|
158 |
+
step=0.1,
|
159 |
+
label="Temperature",
|
160 |
+
info="Controla la creatividad de la respuesta."
|
161 |
+
)
|
162 |
+
top_p = gr.Slider(
|
163 |
+
minimum=0.1,
|
164 |
+
maximum=1.0,
|
165 |
+
value=0.95,
|
166 |
+
step=0.05,
|
167 |
+
label="Top-p (Nucleus Sampling)",
|
168 |
+
info="Par谩metro para el muestreo del texto."
|
169 |
+
)
|
170 |
+
|
171 |
+
chat_history = gr.State([])
|
172 |
+
|
173 |
+
submit_button.click(
|
174 |
+
fn=update_chat,
|
175 |
+
inputs=[user_message, image_input, chat_history, system_message, max_tokens, temperature, top_p],
|
176 |
+
outputs=[user_message, chatbot, chat_history]
|
177 |
+
)
|
178 |
+
|
179 |
+
clear_button.click(
|
180 |
+
fn=lambda: ([], [], []),
|
181 |
+
inputs=[],
|
182 |
+
outputs=[user_message, chatbot, chat_history]
|
183 |
+
)
|
184 |
+
|
185 |
+
image_input.upload(
|
186 |
+
fn=describe_image,
|
187 |
+
inputs=[image_input, system_message, max_tokens, temperature, top_p],
|
188 |
+
outputs=[image_description, chat_history]
|
189 |
+
)
|
190 |
|
|
|
191 |
demo.launch()
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
main()
|