import gradio as gr from huggingface_hub import InferenceClient import base64 import io from PIL import Image import requests # Inicialización del cliente de inferencia con el modelo especificado client = InferenceClient("mistralai/Pixtral-Large-Instruct-2411") def image_to_base64(image_path): """Convert an image file to a base64 string.""" with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('utf-8') return encoded_string def base64_to_image(base64_string): """Convert a base64 string to an image.""" image_data = base64.b64decode(base64_string) image = Image.open(io.BytesIO(image_data)) return image def describe_image(image, system_message, max_tokens, temperature, top_p): """Describe an image using the model.""" if image is None: return "No image uploaded.", [] # Convert image to base64 buffered = io.BytesIO() image.save(buffered, format="JPEG") image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": "Describe the following image:"}, {"role": "user", "content": image_base64} ] response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token return response, [(f"User: Describe the following image:", response)] def respond( user_message: str, chat_history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ) -> str: """ Función para generar respuestas basadas en el historial de chat y parámetros de configuración. Args: user_message (str): Mensaje del usuario. chat_history (list[tuple[str, str]]): Historial de chat. system_message (str): Mensaje del sistema que define el comportamiento del chatbot. max_tokens (int): Máximo número de tokens a generar. temperature (float): Temperatura para el muestreo de texto. top_p (float): Parámetro top-p para el muestreo de texto. Yields: str: Respuesta generada por el modelo. """ # Construcción de la lista de mensajes messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in chat_history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": user_message}) response = "" try: # Obtención de la respuesta del modelo for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token yield response except Exception as e: yield f"Error al obtener respuesta: {str(e)}" def main(): """ Función principal para iniciar la interfaz de chat. """ def update_chat(user_message, image, chat_history, system_message, max_tokens, temperature, top_p): if image is not None: description, new_history = describe_image(image, system_message, max_tokens, temperature, top_p) chat_history.extend(new_history) user_message = description if user_message: response_generator = respond( user_message, chat_history, system_message, max_tokens, temperature, top_p, ) for response in response_generator: chat_history.append((user_message, response)) yield "", chat_history, chat_history else: yield "", chat_history, chat_history with gr.Blocks(title="Chatbot con MistralAI", theme=gr.themes.Soft()) as demo: gr.Markdown("# Chatbot con MistralAI") gr.Markdown("Un chatbot amigable basado en el modelo MistralAI Pixtral-Large-Instruct-2411 que puede describir imágenes y mantener un historial de chat.") with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot(label="Conversación") user_message = gr.Textbox(label="Mensaje del Usuario", placeholder="Escribe tu mensaje aquí...") with gr.Row(): submit_button = gr.Button("Enviar") clear_button = gr.Button("Limpiar") with gr.Column(scale=2): image_input = gr.Image(label="Cargar Imagen", type="pil") image_description = gr.Textbox(label="Descripción de la Imagen", interactive=False) with gr.Row(): system_message = gr.Textbox( value="You are a friendly Chatbot.", label="Mensaje del Sistema", placeholder="Define el comportamiento del chatbot." ) max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens", info="Máximo número de tokens generados." ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="Controla la creatividad de la respuesta." ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)", info="Parámetro para el muestreo del texto." ) chat_history = gr.State([]) submit_button.click( fn=update_chat, inputs=[user_message, image_input, chat_history, system_message, max_tokens, temperature, top_p], outputs=[user_message, chatbot, chat_history] ) clear_button.click( fn=lambda: ([], [], []), inputs=[], outputs=[user_message, chatbot, chat_history] ) image_input.upload( fn=describe_image, inputs=[image_input, system_message, max_tokens, temperature, top_p], outputs=[image_description, chat_history] ) demo.launch() if __name__ == "__main__": main()