Spaces:
Runtime error
Runtime error
import streamlit as st | |
# import fastai | |
from pathlib import Path | |
import pathlib | |
temp = pathlib.PosixPath | |
# pathlib.PosixPath = pathlib.WindowsPath | |
from fastai.learner import load_learner | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
path = Path('/content/') | |
def label_func(x): | |
num = x.stem.split('_')[1] | |
return path/'labels'/f'label_{num}.png' | |
st.title('Flood Segmentation App') | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg"]) | |
print(uploaded_file) | |
model = load_learner('fastai_tfl_253img.pkl', cpu = True) | |
if uploaded_file is not None: | |
img = Image.open(uploaded_file) | |
x = np.asarray(img) | |
tm, tb, tbp = model.predict(x) | |
# img = img.resize((300,300)) | |
# print(img) | |
# img = image.load_img(im, target_size=(300,300)) | |
# x = image.img_to_array(img) | |
st.image(img, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
st.write("Generating Segmentation Mask...") | |
# x = np.expand_dims(x, axis=0) | |
# prob = model.predict(x) | |
# print(tm.numpy()) | |
fig, ax = plt.subplots() | |
plt.axis('off') | |
ax.imshow(tm) | |
# mask = Image.fromarray(np.uint8(tm)) | |
# st.image(mask, caption='Segmentation Mask', use_column_width=True) | |
st.pyplot(fig) | |