{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## **1. Perkenalan**\n", "---\n", "**MILESTONE 2** \n", "**Nama** : Devin Lee \n", "**Batch** : HCK-009 \n", "**Dataset** : E-Commerce Shipping Data \n", "**Objective** : \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## **2. Import Libraries**\n", "---" ] }, { "cell_type": "code", "execution_count": 257, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from numpy import mean, median\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n", "from sklearn.preprocessing import StandardScaler, OrdinalEncoder, OneHotEncoder\n", "from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay, precision_score, f1_score\n", "from sklearn.compose import make_column_transformer\n", "from feature_engine.outliers import Winsorizer\n", "from sklearn.svm import SVC\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from time import time\n", "import warnings\n", "import pickle\n", "from sklearn.pipeline import Pipeline,make_pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## **3. Data Loading**\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***Data Contains :***\n", "- ***ID*** : ID Number of Customers.\n", "- ***Warehouse block*** : The Company have big Warehouse which is divided in to block such as A,B,C,D,E.\n", "- ***Mode of shipment*** : The Company Ships the products in multiple way such as Ship, Flight and Road.\n", "- ***Customer care calls*** : The number of calls made from enquiry for enquiry of the shipment.\n", "- ***Customer rating*** : The company has rated from every customer. 1 is the lowest (Worst), 5 is the highest (Best).\n", "- ***Cost of the product*** : Cost of the Product in US Dollars.\n", "- ***Prior purchases*** : The Number of Prior Purchase.\n", "- ***Product importance*** : The company has categorized the product in the various parameter such as low, medium, high.\n", "Gender : Male and Female.\n", "- ***Discount offered*** : Discount offered on that specific product.\n", "- ***Weight in gms*** : It is the weight in grams.\n", "- ***Reached on time*** : It is the target variable, where 1 Indicates that the product has NOT reached on time and 0 indicates it has reached on time.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***Loading Data:***\n", "> Pada proses ini akan melakukan loading data menggunakan fungsi dari pandas. Dimana yang akan dilakukan adalah untuk melakukan read_csv karena dataset memiliki format csv. " ] }, { "cell_type": "code", "execution_count": 179, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | ID | \n", "Warehouse_block | \n", "Mode_of_Shipment | \n", "Customer_care_calls | \n", "Customer_rating | \n", "Cost_of_the_Product | \n", "Prior_purchases | \n", "Product_importance | \n", "Gender | \n", "Discount_offered | \n", "Weight_in_gms | \n", "Reached.on.Time_Y.N | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "D | \n", "Flight | \n", "4 | \n", "2 | \n", "177 | \n", "3 | \n", "low | \n", "F | \n", "44 | \n", "1233 | \n", "1 | \n", "
1 | \n", "2 | \n", "F | \n", "Flight | \n", "4 | \n", "5 | \n", "216 | \n", "2 | \n", "low | \n", "M | \n", "59 | \n", "3088 | \n", "1 | \n", "
2 | \n", "3 | \n", "A | \n", "Flight | \n", "2 | \n", "2 | \n", "183 | \n", "4 | \n", "low | \n", "M | \n", "48 | \n", "3374 | \n", "1 | \n", "
3 | \n", "4 | \n", "B | \n", "Flight | \n", "3 | \n", "3 | \n", "176 | \n", "4 | \n", "medium | \n", "M | \n", "10 | \n", "1177 | \n", "1 | \n", "
4 | \n", "5 | \n", "C | \n", "Flight | \n", "2 | \n", "2 | \n", "184 | \n", "3 | \n", "medium | \n", "F | \n", "46 | \n", "2484 | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
10994 | \n", "10995 | \n", "A | \n", "Ship | \n", "4 | \n", "1 | \n", "252 | \n", "5 | \n", "medium | \n", "F | \n", "1 | \n", "1538 | \n", "1 | \n", "
10995 | \n", "10996 | \n", "B | \n", "Ship | \n", "4 | \n", "1 | \n", "232 | \n", "5 | \n", "medium | \n", "F | \n", "6 | \n", "1247 | \n", "0 | \n", "
10996 | \n", "10997 | \n", "C | \n", "Ship | \n", "5 | \n", "4 | \n", "242 | \n", "5 | \n", "low | \n", "F | \n", "4 | \n", "1155 | \n", "0 | \n", "
10997 | \n", "10998 | \n", "F | \n", "Ship | \n", "5 | \n", "2 | \n", "223 | \n", "6 | \n", "medium | \n", "M | \n", "2 | \n", "1210 | \n", "0 | \n", "
10998 | \n", "10999 | \n", "D | \n", "Ship | \n", "2 | \n", "5 | \n", "155 | \n", "5 | \n", "low | \n", "F | \n", "6 | \n", "1639 | \n", "0 | \n", "
10999 rows × 12 columns
\n", "\n", " | count | \n", "mean | \n", "std | \n", "min | \n", "25% | \n", "50% | \n", "75% | \n", "max | \n", "
---|---|---|---|---|---|---|---|---|
id | \n", "10999.0 | \n", "5500.000000 | \n", "3175.282140 | \n", "1.0 | \n", "2750.5 | \n", "5500.0 | \n", "8249.5 | \n", "10999.0 | \n", "
customer_care_calls | \n", "10999.0 | \n", "4.054459 | \n", "1.141490 | \n", "2.0 | \n", "3.0 | \n", "4.0 | \n", "5.0 | \n", "7.0 | \n", "
customer_rating | \n", "10999.0 | \n", "2.990545 | \n", "1.413603 | \n", "1.0 | \n", "2.0 | \n", "3.0 | \n", "4.0 | \n", "5.0 | \n", "
cost_of_the_product | \n", "10999.0 | \n", "210.196836 | \n", "48.063272 | \n", "96.0 | \n", "169.0 | \n", "214.0 | \n", "251.0 | \n", "310.0 | \n", "
prior_purchases | \n", "10999.0 | \n", "3.567597 | \n", "1.522860 | \n", "2.0 | \n", "3.0 | \n", "3.0 | \n", "4.0 | \n", "10.0 | \n", "
discount_offered | \n", "10999.0 | \n", "13.373216 | \n", "16.205527 | \n", "1.0 | \n", "4.0 | \n", "7.0 | \n", "10.0 | \n", "65.0 | \n", "
weight_in_gms | \n", "10999.0 | \n", "3634.016729 | \n", "1635.377251 | \n", "1001.0 | \n", "1839.5 | \n", "4149.0 | \n", "5050.0 | \n", "7846.0 | \n", "
reached.on.time_y.n | \n", "10999.0 | \n", "0.596691 | \n", "0.490584 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "
\n", " | warehouse_block | \n", "mode_of_shipment | \n", "customer_care_calls | \n", "customer_rating | \n", "cost_of_the_product | \n", "prior_purchases | \n", "product_importance | \n", "gender | \n", "discount_offered | \n", "weight_in_gms | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "D | \n", "Flight | \n", "4 | \n", "2 | \n", "177 | \n", "3 | \n", "low | \n", "F | \n", "44 | \n", "1233 | \n", "
1 | \n", "E | \n", "Flight | \n", "4 | \n", "5 | \n", "216 | \n", "2 | \n", "low | \n", "M | \n", "59 | \n", "3088 | \n", "
2 | \n", "A | \n", "Flight | \n", "2 | \n", "2 | \n", "183 | \n", "4 | \n", "low | \n", "M | \n", "48 | \n", "3374 | \n", "
3 | \n", "B | \n", "Flight | \n", "3 | \n", "3 | \n", "176 | \n", "4 | \n", "medium | \n", "M | \n", "10 | \n", "1177 | \n", "
4 | \n", "C | \n", "Flight | \n", "2 | \n", "2 | \n", "184 | \n", "3 | \n", "medium | \n", "F | \n", "46 | \n", "2484 | \n", "
\n", " | warehouse_block | \n", "mode_of_shipment | \n", "customer_care_calls | \n", "customer_rating | \n", "cost_of_the_product | \n", "prior_purchases | \n", "product_importance | \n", "gender | \n", "discount_offered | \n", "weight_in_gms | \n", "
---|---|---|---|---|---|---|---|---|---|---|
2240 | \n", "A | \n", "Ship | \n", "3 | \n", "3 | \n", "168 | \n", "3 | \n", "medium | \n", "M | \n", "11 | \n", "1008 | \n", "
4558 | \n", "C | \n", "Ship | \n", "5 | \n", "1 | \n", "252 | \n", "4 | \n", "medium | \n", "M | \n", "4 | \n", "1837 | \n", "
10791 | \n", "B | \n", "Ship | \n", "4 | \n", "2 | \n", "259 | \n", "5 | \n", "medium | \n", "M | \n", "7 | \n", "1042 | \n", "
4310 | \n", "A | \n", "Ship | \n", "6 | \n", "2 | \n", "246 | \n", "6 | \n", "low | \n", "F | \n", "1 | \n", "4846 | \n", "
5211 | \n", "B | \n", "Flight | \n", "3 | \n", "2 | \n", "160 | \n", "3 | \n", "medium | \n", "M | \n", "3 | \n", "5807 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
7526 | \n", "A | \n", "Road | \n", "3 | \n", "3 | \n", "157 | \n", "3 | \n", "low | \n", "F | \n", "6 | \n", "5187 | \n", "
6471 | \n", "B | \n", "Ship | \n", "4 | \n", "4 | \n", "266 | \n", "3 | \n", "low | \n", "M | \n", "3 | \n", "5531 | \n", "
2454 | \n", "D | \n", "Road | \n", "4 | \n", "5 | \n", "219 | \n", "2 | \n", "medium | \n", "F | \n", "28 | \n", "2164 | \n", "
9484 | \n", "C | \n", "Ship | \n", "3 | \n", "5 | \n", "218 | \n", "2 | \n", "medium | \n", "F | \n", "6 | \n", "4072 | \n", "
2667 | \n", "B | \n", "Ship | \n", "5 | \n", "3 | \n", "162 | \n", "4 | \n", "medium | \n", "M | \n", "38 | \n", "1407 | \n", "
8799 rows × 10 columns
\n", "\n", " | warehouse_block | \n", "mode_of_shipment | \n", "customer_care_calls | \n", "customer_rating | \n", "cost_of_the_product | \n", "prior_purchases | \n", "product_importance | \n", "gender | \n", "discount_offered | \n", "weight_in_gms | \n", "
---|---|---|---|---|---|---|---|---|---|---|
2240 | \n", "A | \n", "Ship | \n", "3 | \n", "3 | \n", "168 | \n", "3.0 | \n", "medium | \n", "M | \n", "11 | \n", "1008 | \n", "
4558 | \n", "C | \n", "Ship | \n", "5 | \n", "1 | \n", "252 | \n", "4.0 | \n", "medium | \n", "M | \n", "4 | \n", "1837 | \n", "
10791 | \n", "B | \n", "Ship | \n", "4 | \n", "2 | \n", "259 | \n", "5.0 | \n", "medium | \n", "M | \n", "7 | \n", "1042 | \n", "
4310 | \n", "A | \n", "Ship | \n", "6 | \n", "2 | \n", "246 | \n", "5.5 | \n", "low | \n", "F | \n", "1 | \n", "4846 | \n", "
5211 | \n", "B | \n", "Flight | \n", "3 | \n", "2 | \n", "160 | \n", "3.0 | \n", "medium | \n", "M | \n", "3 | \n", "5807 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
7526 | \n", "A | \n", "Road | \n", "3 | \n", "3 | \n", "157 | \n", "3.0 | \n", "low | \n", "F | \n", "6 | \n", "5187 | \n", "
6471 | \n", "B | \n", "Ship | \n", "4 | \n", "4 | \n", "266 | \n", "3.0 | \n", "low | \n", "M | \n", "3 | \n", "5531 | \n", "
2454 | \n", "D | \n", "Road | \n", "4 | \n", "5 | \n", "219 | \n", "2.0 | \n", "medium | \n", "F | \n", "19 | \n", "2164 | \n", "
9484 | \n", "C | \n", "Ship | \n", "3 | \n", "5 | \n", "218 | \n", "2.0 | \n", "medium | \n", "F | \n", "6 | \n", "4072 | \n", "
2667 | \n", "B | \n", "Ship | \n", "5 | \n", "3 | \n", "162 | \n", "4.0 | \n", "medium | \n", "M | \n", "19 | \n", "1407 | \n", "
8799 rows × 10 columns
\n", "Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('kneighborsclassifier', KNeighborsClassifier(n_jobs=-1))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('kneighborsclassifier', KNeighborsClassifier(n_jobs=-1))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
KNeighborsClassifier(n_jobs=-1)
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
SVC(random_state=42)
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('decisiontreeclassifier',\n", " DecisionTreeClassifier(criterion='entropy', max_depth=3,\n", " min_samples_leaf=2, min_samples_split=5,\n", " random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('decisiontreeclassifier',\n", " DecisionTreeClassifier(criterion='entropy', max_depth=3,\n", " min_samples_leaf=2, min_samples_split=5,\n", " random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
DecisionTreeClassifier(criterion='entropy', max_depth=3, min_samples_leaf=2,\n", " min_samples_split=5, random_state=42)
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('randomforestclassifier',\n", " RandomForestClassifier(max_depth=5, min_samples_leaf=2,\n", " min_samples_split=5, n_jobs=-1,\n", " random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('randomforestclassifier',\n", " RandomForestClassifier(max_depth=5, min_samples_leaf=2,\n", " min_samples_split=5, n_jobs=-1,\n", " random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
RandomForestClassifier(max_depth=5, min_samples_leaf=2, min_samples_split=5,\n", " n_jobs=-1, random_state=42)
GridSearchCV(cv=50,\n", " estimator=Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder'...\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('kneighborsclassifier',\n", " KNeighborsClassifier(n_jobs=-1))]),\n", " n_jobs=-1,\n", " param_grid={'kneighborsclassifier__metric': ['euclidean',\n", " 'manhattan'],\n", " 'kneighborsclassifier__n_neighbors': [1, 2, 3, 4, 5, 6,\n", " 7, 8, 9, 10, 11,\n", " 12, 13, 14, 15,\n", " 16, 17, 18, 19,\n", " 20, 21, 22, 23,\n", " 24, 25, 26, 27,\n", " 28, 29, 30],\n", " 'kneighborsclassifier__weights': ['uniform',\n", " 'distance']},\n", " scoring='precision')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GridSearchCV(cv=50,\n", " estimator=Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder'...\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('kneighborsclassifier',\n", " KNeighborsClassifier(n_jobs=-1))]),\n", " n_jobs=-1,\n", " param_grid={'kneighborsclassifier__metric': ['euclidean',\n", " 'manhattan'],\n", " 'kneighborsclassifier__n_neighbors': [1, 2, 3, 4, 5, 6,\n", " 7, 8, 9, 10, 11,\n", " 12, 13, 14, 15,\n", " 16, 17, 18, 19,\n", " 20, 21, 22, 23,\n", " 24, 25, 26, 27,\n", " 28, 29, 30],\n", " 'kneighborsclassifier__weights': ['uniform',\n", " 'distance']},\n", " scoring='precision')
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('kneighborsclassifier', KNeighborsClassifier(n_jobs=-1))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
KNeighborsClassifier(n_jobs=-1)
GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(random_state=42))]),\n", " n_jobs=-1,\n", " param_grid={'svc__C': [0.1, 1, 10, 100],\n", " 'svc__gamma': ['scale', 'auto'],\n", " 'svc__kernel': ['linear', 'rbf', 'poly']},\n", " scoring='precision', verbose=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(random_state=42))]),\n", " n_jobs=-1,\n", " param_grid={'svc__C': [0.1, 1, 10, 100],\n", " 'svc__gamma': ['scale', 'auto'],\n", " 'svc__kernel': ['linear', 'rbf', 'poly']},\n", " scoring='precision', verbose=1)
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
SVC(random_state=42)
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(C=0.1, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('svc', SVC(C=0.1, random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
SVC(C=0.1, random_state=42)
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('ada_boost_svc',\n", " AdaBoostClassifier(base_estimator=SVC(probability=True,\n", " random_state=42),\n", " n_estimators=5, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['customer_care_calls',\n", " 'customer_rating',\n", " 'cost_of_the_product',\n", " 'prior_purchases',\n", " 'discount_offered',\n", " 'weight_in_gms']),\n", " ('ordinalencoder',\n", " OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder',\n", " OneHotEncoder(),\n", " ['warehouse_block',\n", " 'mode_of_shipment',\n", " 'gender'])])),\n", " ('ada_boost_svc',\n", " AdaBoostClassifier(base_estimator=SVC(probability=True,\n", " random_state=42),\n", " n_estimators=5, random_state=42))])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('standardscaler', StandardScaler(),\n", " ['customer_care_calls', 'customer_rating',\n", " 'cost_of_the_product', 'prior_purchases',\n", " 'discount_offered', 'weight_in_gms']),\n", " ('ordinalencoder', OrdinalEncoder(),\n", " ['product_importance']),\n", " ('onehotencoder', OneHotEncoder(),\n", " ['warehouse_block', 'mode_of_shipment',\n", " 'gender'])])
['customer_care_calls', 'customer_rating', 'cost_of_the_product', 'prior_purchases', 'discount_offered', 'weight_in_gms']
StandardScaler()
['product_importance']
OrdinalEncoder()
['warehouse_block', 'mode_of_shipment', 'gender']
OneHotEncoder()
[]
passthrough
AdaBoostClassifier(base_estimator=SVC(probability=True, random_state=42),\n", " n_estimators=5, random_state=42)
SVC(probability=True, random_state=42)
SVC(probability=True, random_state=42)