from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from diffusers import UniPCMultistepScheduler import gradio as gr import numpy as np import torch import base64 import cv2 from io import BytesIO from PIL import Image, ImageFilter from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css # Constants low_threshold = 100 high_threshold = 200 canvas_html = '' load_js = """ async () => { const url = "https://huggingface.co/datasets/mishig/gradio-components/raw/main/mannequinAll.js" fetch(url) .then(res => res.text()) .then(text => { const script = document.createElement('script'); script.type = "module" script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); document.head.appendChild(script); }); } """ get_js_image = """ async (canvas, prompt) => { const poseMakerEl = document.querySelector("pose-maker"); const imgBase64 = poseMakerEl.captureScreenshotDepthMap(); return [imgBase64, prompt] } """ # Models controlnet = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # This command loads the individual model components on GPU on-demand. So, we don't # need to explicitly call pipe.to("cuda"). pipe.enable_model_cpu_offload() # xformers pipe.enable_xformers_memory_efficient_attention() # Generator seed, generator = torch.manual_seed(0) def get_canny_filter(image): if not isinstance(image, np.ndarray): image = np.array(image) image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) return canny_image def generate_images(canvas, prompt): try: base64_img = canvas image_data = base64.b64decode(base64_img.split(',')[1]) input_img = Image.open(BytesIO(image_data)).convert( 'RGB').resize((512, 512)) input_img = input_img.filter(ImageFilter.GaussianBlur(radius=2)) input_img = get_canny_filter(input_img) output = pipe( f'{prompt}, best quality, extremely detailed', input_img, generator=generator, num_images_per_prompt=2, num_inference_steps=20, negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", ) all_outputs = [] for image in output.images: all_outputs.append(image) return all_outputs except Exception as e: raise gr.Error(str(e)) def placeholder_fn(axis): pass js_change_rotation_axis = """ async (axis) => { const poseMakerEl = document.querySelector("pose-maker"); poseMakerEl.changeRotationAxis(axis); } """ js_pose_template = """ async (pose) => { const poseMakerEl = document.querySelector("pose-maker"); poseMakerEl.setPose(pose); } """ with gr.Blocks(css=share_btn_css) as blocks: gr.HTML( """

Pose in 3D & Render with ControlNet (SD-1.5)

Using ControlNet and three.js/mannequin.js

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

""" ) with gr.Row(): with gr.Column(): canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True) with gr.Row(): rotation_axis = gr.Radio(["x", "y", "z"], value="x", label="Joint rotation axis") pose_template = gr.Radio(["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template") prompt = gr.Textbox( label="Enter your prompt", max_lines=1, placeholder="best quality, extremely detailed", elem_id="prompt", ) run_button = gr.Button("Generate") with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") with gr.Column(): gallery = gr.Gallery(elem_id="gallery").style(grid=[2], height="auto") rotation_axis.change(fn=placeholder_fn, inputs=[rotation_axis], outputs=[], queue=False, _js=js_change_rotation_axis) pose_template.change(fn=placeholder_fn, inputs=[pose_template], outputs=[], queue=False, _js=js_pose_template) run_button.click(fn=generate_images, inputs=[canvas, prompt], outputs=[gallery], _js=get_js_image) share_button.click(None, [], [], _js=share_js) blocks.load(None, None, None, _js=load_js) blocks.launch(debug=True)