Spaces:
Build error
Build error
Commit
·
004a744
1
Parent(s):
12f5ffc
Update app.py
Browse filesAdded source code for the app
app.py
CHANGED
@@ -1,7 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
+
import spacy
|
2 |
+
from spacy.language import Language
|
3 |
+
from spacy.lang.it import Italian
|
4 |
+
import re
|
5 |
+
from transformers import pipeline
|
6 |
+
from gradio.inputs import File
|
7 |
import gradio as gr
|
8 |
+
from pdf2image import convert_from_path
|
9 |
+
import pytesseract
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
from gradio.inputs import Dropdown
|
13 |
+
import gradio as gr
|
14 |
+
import tempfile
|
15 |
+
import os
|
16 |
+
from pdf2image import convert_from_path
|
17 |
+
import pytesseract
|
18 |
+
from IPython.display import Markdown
|
19 |
+
import fitz
|
20 |
+
from pdf2image import convert_from_bytes
|
21 |
+
|
22 |
+
|
23 |
+
def preprocess_punctuation(text):
|
24 |
+
pattern = r'(?<![a-z])[a-zA-Z\.]{1,4}(?:\.[a-zA-Z\.]{1,4})*\.(?!\s*[A-Z])'
|
25 |
+
matches = re.findall(pattern, text)
|
26 |
+
res = [*set(matches)]
|
27 |
+
#res = [r for r in res if not nlp(r).ents or
|
28 |
+
#not any(ent.label_ in nlp.get_pipe('ner').labels for ent in nlp(r).ents)] #optimized
|
29 |
+
return res
|
30 |
+
|
31 |
+
|
32 |
+
def preprocess_text(text):
|
33 |
+
prep_text = re.sub(r'\n\s*\n', '\n', text)
|
34 |
+
prep_text = re.sub(r'\n{2,}', '\n', prep_text)
|
35 |
+
#string_with_single_newlines_and_no_blank_lines = re.sub(r' {2,}', ' ', string_with_single_newlines_and_no_blank_lines)
|
36 |
+
#print(string_with_single_newlines_and_no_blank_lines)
|
37 |
+
return prep_text
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
@Language.component('custom_tokenizer')
|
42 |
+
def custom_tokenizer(doc):
|
43 |
+
# Define a custom rule to ignore colons as a sentence boundary
|
44 |
+
for token in doc[:-1]:
|
45 |
+
if (token.text == ":"):
|
46 |
+
doc[token.i+1].is_sent_start = False
|
47 |
+
return doc
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def get_sentences(text, dictionary = None):
|
52 |
+
cl_sentences = []
|
53 |
+
chars_to_strip = [' ', '\n']
|
54 |
+
chars_to_strip_str = ''.join(set(chars_to_strip))
|
55 |
+
nlp = spacy.load("it_core_news_lg") #load ita moodel
|
56 |
+
nlp.add_pipe("custom_tokenizer", before="parser")
|
57 |
+
|
58 |
+
for punct in preprocess_punctuation(text):
|
59 |
+
nlp.tokenizer.add_special_case(punct, [{spacy.symbols.ORTH: punct, spacy.symbols.NORM: punct}])
|
60 |
+
|
61 |
+
doc = nlp(text) # Process the text with spaCy
|
62 |
+
sentences = list(doc.sents) # Split the text into sentences
|
63 |
+
for sentence in sentences:
|
64 |
+
sent = sentence.text
|
65 |
+
cl_sentence = ' '.join(filter(None, sent.lstrip(chars_to_strip_str).rstrip(chars_to_strip_str).split(' ')))
|
66 |
+
if cl_sentence!= '':
|
67 |
+
cl_sentences.append(cl_sentence)
|
68 |
+
return cl_sentences
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def extract_numbers(text, given_strings):
|
74 |
+
# Split text into a list of words
|
75 |
+
words = text.split()
|
76 |
+
# Find the indices of the given strings in the list of words
|
77 |
+
indices = [i for i, word in enumerate(words) if any(s in word for s in given_strings)]
|
78 |
+
# Initialize an empty list to store the numbers
|
79 |
+
numbers = []
|
80 |
+
# Loop through each index
|
81 |
+
for index in indices:
|
82 |
+
# Define the range of words to search for numbers
|
83 |
+
start = max(index - 1, 0)
|
84 |
+
end = min(index + 2, len(words))
|
85 |
+
# Extract the words within the range
|
86 |
+
context = words[start:end]
|
87 |
+
# Check if the context contains mathematical operators
|
88 |
+
if any(re.match(r'[+\*/]', word) for word in context):
|
89 |
+
continue
|
90 |
+
# Find all numbers in the context
|
91 |
+
context_numbers = [
|
92 |
+
float(re.sub('[^0-9\.,]+', '', word).replace(',', '.'))
|
93 |
+
if re.sub('[^0-9\.,]+', '', word).replace(',', '.').replace('.', '', 1).isdigit()
|
94 |
+
else int(re.sub('[^0-9]+', '', word))
|
95 |
+
if re.sub('[^0-9]+', '', word).isdigit()
|
96 |
+
else None
|
97 |
+
for word in context
|
98 |
+
]
|
99 |
+
# Add the numbers to the list
|
100 |
+
numbers.extend(context_numbers)
|
101 |
+
return numbers
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
def get_text_and_values(text, key_list):
|
106 |
+
sentences = get_sentences(text)
|
107 |
+
total_numbers= []
|
108 |
+
infoDict = {}
|
109 |
+
for sentence in sentences:
|
110 |
+
numbers = extract_numbers(text = sentence, given_strings = key_list)
|
111 |
+
total_numbers.append(numbers)
|
112 |
+
if not numbers:
|
113 |
+
continue
|
114 |
+
else: infoDict[sentence] = numbers
|
115 |
+
return infoDict
|
116 |
+
|
117 |
+
|
118 |
+
def get_useful_text(dictionary):
|
119 |
+
keysList = list(dictionary.keys())
|
120 |
+
tes = ('\n'.join(keysList))
|
121 |
+
return tes
|
122 |
+
|
123 |
+
def get_values(dictionary):
|
124 |
+
pr = list(dictionary.values())
|
125 |
+
return pr
|
126 |
+
|
127 |
+
|
128 |
+
def initialize_qa_transformer(model):
|
129 |
+
qa = pipeline("text2text-generation", model=model)
|
130 |
+
return qa
|
131 |
+
|
132 |
+
|
133 |
+
def get_answers_unfiltered(dictionary, question, qa_pipeline):
|
134 |
+
keysList = list(dictionary.keys())
|
135 |
+
answers = []
|
136 |
+
for kl in keysList:
|
137 |
+
answer = qa_pipeline(f'{kl} Domanda: {question}')
|
138 |
+
answers.append(answer)
|
139 |
+
return answers
|
140 |
+
|
141 |
+
|
142 |
+
def get_total(answered_values, text, keywords, raw_values, unique_values = False):
|
143 |
+
numeric_list = [num for sublist in raw_values for num in sublist if isinstance(num, (int, float))]
|
144 |
+
#numbers = [float(x[0]['generated_text']) for x in answered_values if x[0]['generated_text'].isdigit()]
|
145 |
+
pattern = r'\d+(?:[.,]\d+)?'
|
146 |
+
numbers = []
|
147 |
+
for sub_lst in answered_values:
|
148 |
+
for d in sub_lst:
|
149 |
+
for k, v in d.items():
|
150 |
+
# Replace commas with dots
|
151 |
+
v = v.replace(',', '.')
|
152 |
+
# Extract numbers and convert to float
|
153 |
+
numbers += [float(match) for match in re.findall(pattern, v) if (float(match) >= 5.0) and (float(match) in numeric_list)]
|
154 |
+
###### remove duplicates
|
155 |
+
if unique_values:
|
156 |
+
numbers = list(set(numbers))
|
157 |
+
######
|
158 |
+
total = 0
|
159 |
+
sum = 0
|
160 |
+
total_list = []
|
161 |
+
# Define a regular expression pattern that will match a number
|
162 |
+
pattern = r'\d+'
|
163 |
+
# Loop through the keywords and search for them in the text
|
164 |
+
found = False
|
165 |
+
for keyword in keywords:
|
166 |
+
# Build a regular expression pattern that looks for the keyword
|
167 |
+
# followed by up to three words, then a number
|
168 |
+
keyword_pattern = f'{keyword}(\\s+\\w+){{0,3}}\\s+({pattern})'
|
169 |
+
match = re.search(keyword_pattern, text, re.IGNORECASE)
|
170 |
+
if match:
|
171 |
+
# If we find a match, print the number and set found to True
|
172 |
+
number = match.group(2)
|
173 |
+
if (number in numbers) and (number in numeric_list):
|
174 |
+
total_list.append(int(number))
|
175 |
+
print(f"Found a value ({number}) for keyword '{keyword}'.")
|
176 |
+
found = True
|
177 |
+
|
178 |
+
# If we didn't find a match
|
179 |
+
if not found:
|
180 |
+
for value in numbers:
|
181 |
+
if value in numeric_list:
|
182 |
+
total += value
|
183 |
+
total_list.append(total)
|
184 |
+
#If there is more than one total, it means different lots with many total measures for each house. Calculate the sum of the totals mq
|
185 |
+
for value in total_list:
|
186 |
+
sum += value
|
187 |
+
return numbers, sum
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
def extractor_clean(text, k_words, transformer, question, total_kwords, return_text = False):
|
193 |
+
|
194 |
+
tex = ''
|
195 |
+
dictionary = get_text_and_values(text, k_words)
|
196 |
+
raw = get_values(dictionary)
|
197 |
+
qa = initialize_qa_transformer(transformer)
|
198 |
+
val = get_answers_unfiltered(dictionary, question = question, qa_pipeline = qa)
|
199 |
+
keywords = ['totale', 'complessivo', 'complessiva']
|
200 |
+
values = get_total(answered_values= val, raw_values = raw, text = text, keywords = total_kwords, unique_values = True)
|
201 |
+
if return_text:
|
202 |
+
tex = get_useful_text(dictionary)
|
203 |
+
return values, return_text, tex
|
204 |
+
elif return_text == False:
|
205 |
+
return values, return_text
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
def format_output(extracted_values):
|
210 |
+
output = f"Valori: {extracted_values[0][0]}\n"
|
211 |
+
output += f"Totale: {extracted_values[0][1]}\n"
|
212 |
+
if extracted_values[1] == True:
|
213 |
+
output += "-------------------\n"
|
214 |
+
output += f"Rif. Testo:\n{extracted_values[2]}"
|
215 |
+
return output
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def pdf_ocr(file):
|
221 |
+
# Convert PDF to image
|
222 |
+
with tempfile.TemporaryDirectory() as path:
|
223 |
+
with open(file, "rb") as f:
|
224 |
+
content = f.read()
|
225 |
+
|
226 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
227 |
+
num_pages = len(doc)
|
228 |
+
|
229 |
+
# Extract text from the PDF
|
230 |
+
text = ""
|
231 |
+
for page in doc:
|
232 |
+
text += page.get_text()
|
233 |
+
|
234 |
+
# Perform OCR on the PDF if the extracted text is empty
|
235 |
+
if not text:
|
236 |
+
# Convert PDF pages to images
|
237 |
+
images = convert_from_path(content)
|
238 |
+
for i, img in enumerate(images):
|
239 |
+
text += pytesseract.image_to_string(img, lang='ita')
|
240 |
+
|
241 |
+
# Clear the image list to free up memory
|
242 |
+
del images
|
243 |
+
|
244 |
+
# Call extractor_clean and format_output functions
|
245 |
+
ks = ('mq', 'metri quadri', 'm2')
|
246 |
+
tra = 'it5/it5-large-question-answering'
|
247 |
+
quest = "Quanti metri quadri misura la superficie?"
|
248 |
+
totalK = ['totale', 'complessivo', 'complessiva']
|
249 |
+
|
250 |
+
extracted_values = extractor_clean(text=text, k_words=ks, transformer=tra, question=quest, total_kwords=totalK, return_text=True)
|
251 |
+
output = format_output(extracted_values=extracted_values)
|
252 |
+
|
253 |
+
return output
|
254 |
+
|
255 |
+
|
256 |
+
def ocr_interface(pdf_file):
|
257 |
+
# Call the pdf_ocr function
|
258 |
+
ocr_output = pdf_ocr(pdf_file.name)
|
259 |
+
return ocr_output
|
260 |
|
|
|
|
|
261 |
|
262 |
+
pdf_input = gr.inputs.File(label="PDF File")
|
263 |
+
output_text = gr.outputs.Textbox(label="Output")
|
264 |
+
iface = gr.Interface(fn=ocr_interface, inputs=pdf_input, outputs=output_text)
|
265 |
iface.launch()
|