Spaces:
Running
on
Zero
Running
on
Zero
Add model files
Browse files- app.py +91 -0
- standalone_velvet.py +305 -0
- visual_bloom.torch +3 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from standalone_velvet import setup_models
|
4 |
+
|
5 |
+
models_dict = setup_models("visual_bloom.torch")
|
6 |
+
visual_bloom = models_dict["visual_bloom"]
|
7 |
+
tokenizer = models_dict["tokenizer"]
|
8 |
+
image_feature_collator = models_dict["image_feature_collator"]
|
9 |
+
|
10 |
+
|
11 |
+
def run_inference(text_input, image_input):
|
12 |
+
image_features, image_attentions = image_feature_collator([image_input])
|
13 |
+
instruction_inputs = tokenizer([text_input], return_tensors="pt")
|
14 |
+
language_output = visual_bloom.generate(
|
15 |
+
image_features,
|
16 |
+
image_attentions,
|
17 |
+
instruction_inputs["input_ids"],
|
18 |
+
instruction_inputs["attention_mask"],
|
19 |
+
)
|
20 |
+
|
21 |
+
human_output = tokenizer.decode(language_output[0], skip_special_tokens=True)
|
22 |
+
return human_output.split(".")[0]
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
markdown = """
|
27 |
+
# Quick introduction
|
28 |
+
|
29 |
+
We have proposed a prompting vision language model.
|
30 |
+
The model can caption images and answer questions related to images.
|
31 |
+
It is trained on CC3M, COCO, VQAv2, OK-VQA, TextCaps, TextVQA.
|
32 |
+
As the result of using Google Translate,
|
33 |
+
these datasets collectively contain millions of image-text pairs in English and Vietnamese.
|
34 |
+
|
35 |
+
For further details, please refer to [Velvet](https://github.com/dinhanhx/velvet?tab=readme-ov-file#introduction).
|
36 |
+
|
37 |
+
# Usage
|
38 |
+
|
39 |
+
## Run with pre-defined examples
|
40 |
+
|
41 |
+
1. Scroll to bottom of the page to see the examples.
|
42 |
+
2. Click one of them.
|
43 |
+
3. Click the `Run Inference` button.
|
44 |
+
|
45 |
+
## Run with user-defined inputs
|
46 |
+
|
47 |
+
### 1. Prepare text input
|
48 |
+
|
49 |
+
Image captioning:
|
50 |
+
- `Generate caption in en:`
|
51 |
+
- `Generate caption in vi:`
|
52 |
+
|
53 |
+
Visual question answering:
|
54 |
+
- `Generate answer in en: <question>?`
|
55 |
+
- `Generate answer in vi: <question>?`
|
56 |
+
|
57 |
+
Don't forget to replace `<question>` with your own question either in English or Vietnamese.
|
58 |
+
|
59 |
+
To write the prompt, one can refer to the examples at the bottom of the page.
|
60 |
+
|
61 |
+
### 2. Prepare image input
|
62 |
+
|
63 |
+
You can do as said in Image Input box. Wide range of image types are supported by PIL.
|
64 |
+
|
65 |
+
### 3. Click the `Run Inference` button
|
66 |
+
"""
|
67 |
+
examples = [
|
68 |
+
["Generate caption in en:", "examples/cat.png"],
|
69 |
+
["Generate caption in vi:", "examples/cat.png"],
|
70 |
+
["Generate answer in en: what is the color of the cat?", "examples/cat.png"],
|
71 |
+
["Generate answer in vi: màu sắc của con mèo là gì?", "examples/cat.png"],
|
72 |
+
]
|
73 |
+
|
74 |
+
with gr.Blocks() as demo:
|
75 |
+
gr.Markdown(markdown)
|
76 |
+
|
77 |
+
text_input = gr.Textbox(label="Text Input")
|
78 |
+
image_input = gr.Image(label="Image Input", type="pil")
|
79 |
+
|
80 |
+
text_output = gr.Textbox(label="Text Output")
|
81 |
+
|
82 |
+
infer_button = gr.Button("Run Inference")
|
83 |
+
infer_button.click(
|
84 |
+
run_inference, inputs=[text_input, image_input], outputs=text_output
|
85 |
+
)
|
86 |
+
|
87 |
+
examples = gr.Examples(
|
88 |
+
examples=examples,
|
89 |
+
inputs=[text_input, image_input],
|
90 |
+
)
|
91 |
+
demo.launch()
|
standalone_velvet.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import rearrange
|
7 |
+
from PIL import Image
|
8 |
+
from torch import nn
|
9 |
+
from transformers.models.bert import BertConfig, BertModel
|
10 |
+
from transformers.models.bloom import BloomConfig, BloomForCausalLM, BloomTokenizerFast
|
11 |
+
from transformers.models.convnext import ConvNextImageProcessor
|
12 |
+
from transformers.models.convnextv2 import ConvNextV2Config
|
13 |
+
from transformers.models.convnextv2.modeling_convnextv2 import ConvNextV2Model
|
14 |
+
|
15 |
+
|
16 |
+
# Copied from
|
17 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/collator.py#L13-L32
|
18 |
+
@dataclass
|
19 |
+
class ImageFeatureCollator:
|
20 |
+
image_processor: ConvNextImageProcessor
|
21 |
+
image_model: ConvNextV2Model
|
22 |
+
|
23 |
+
def __call__(self, batch_image: List[Image.Image]):
|
24 |
+
return self.tensorize_batch_image(batch_image=batch_image)
|
25 |
+
|
26 |
+
def tensorize_batch_image(self, batch_image: List[Image.Image]):
|
27 |
+
image_inputs = self.image_processor(batch_image, return_tensors="pt")
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
image_outputs = self.image_model(**image_inputs)
|
31 |
+
image_features = image_outputs["last_hidden_state"]
|
32 |
+
|
33 |
+
image_features = rearrange(image_features, "b c h w -> b h w c")
|
34 |
+
image_features = rearrange(image_features, "b h w c -> b (h w) c")
|
35 |
+
|
36 |
+
image_attentions = torch.ones(image_features.size()[:-1], dtype=torch.long)
|
37 |
+
return image_features, image_attentions
|
38 |
+
|
39 |
+
|
40 |
+
# Copied from
|
41 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/cutie.py#L6C1-L78C28
|
42 |
+
class IdentityForBertEmbeddings(nn.Module):
|
43 |
+
"""To skip all BertEmbeddings because another text embeddings provided by another model are used"""
|
44 |
+
|
45 |
+
def __init__(self, *args, **kwargs) -> None:
|
46 |
+
super().__init__(*args, **kwargs)
|
47 |
+
|
48 |
+
def forward(self, **bert_embeddings_args):
|
49 |
+
inputs_embeds = bert_embeddings_args.get("inputs_embeds", None)
|
50 |
+
return inputs_embeds
|
51 |
+
|
52 |
+
|
53 |
+
class Cutie(nn.Module):
|
54 |
+
"""Cutie - Qt - Query Transformer - Q-Former
|
55 |
+
|
56 |
+
Cutie is motivated by the underlying theoretical foundations of Q-Former presented in BLIP-2 https://arxiv.org/abs/2301.12597
|
57 |
+
It should be noted that Cutie differs from the specific approach described in the aforementioned paper
|
58 |
+
Both Cutie and Q-former have Query tokens.
|
59 |
+
Cutie uses the same unmodified BERT.
|
60 |
+
Q-former modifies BERT to behave differently on some tasks.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
bert_config: BertConfig,
|
66 |
+
max_query_length: int = 32,
|
67 |
+
language_model_ignore_label: int = -100,
|
68 |
+
) -> None:
|
69 |
+
assert bert_config.is_decoder, "BERT must be a decoder"
|
70 |
+
assert bert_config.add_cross_attention, "BERT must have cross attention layer"
|
71 |
+
super().__init__()
|
72 |
+
self.bert_model = BertModel(bert_config, add_pooling_layer=False)
|
73 |
+
self.bert_model.embeddings = IdentityForBertEmbeddings()
|
74 |
+
|
75 |
+
self.query_tokens = nn.Parameter(
|
76 |
+
torch.zeros(1, max_query_length, bert_config.hidden_size)
|
77 |
+
)
|
78 |
+
self.query_tokens.data.normal_(mean=0.0, std=bert_config.initializer_range)
|
79 |
+
self.query_attentions = torch.ones(
|
80 |
+
self.query_tokens.size()[:-1], dtype=torch.long
|
81 |
+
)
|
82 |
+
self.query_labels = torch.full(
|
83 |
+
self.query_tokens.size()[:-1], language_model_ignore_label, dtype=torch.long
|
84 |
+
)
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
image_features: torch.Tensor,
|
89 |
+
image_attentions: torch.Tensor,
|
90 |
+
instruction_embeds: torch.Tensor,
|
91 |
+
instruction_attention_mask: torch.Tensor,
|
92 |
+
):
|
93 |
+
batch_size = image_features.size(0)
|
94 |
+
|
95 |
+
query_tokens = self.query_tokens.expand(batch_size, -1, -1).to(
|
96 |
+
self.query_tokens.device
|
97 |
+
)
|
98 |
+
query_attentions = self.query_attentions.expand(batch_size, -1).to(
|
99 |
+
self.query_tokens.device
|
100 |
+
)
|
101 |
+
|
102 |
+
cat_embeds = torch.cat([query_tokens, instruction_embeds], dim=1)
|
103 |
+
cat_attentions = torch.cat(
|
104 |
+
[query_attentions, instruction_attention_mask], dim=1
|
105 |
+
)
|
106 |
+
|
107 |
+
bert_outputs = self.bert_model(
|
108 |
+
inputs_embeds=cat_embeds,
|
109 |
+
attention_mask=cat_attentions,
|
110 |
+
encoder_hidden_states=image_features,
|
111 |
+
encoder_attention_mask=image_attentions,
|
112 |
+
)
|
113 |
+
cutie_output = bert_outputs.last_hidden_state[:, : query_tokens.size(1), :]
|
114 |
+
return cutie_output
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from
|
118 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/visual_bloom.py#L12C1-L162C31
|
119 |
+
class VisualBloom(nn.Module):
|
120 |
+
"""A BLOOM-based model that can take image inputs"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
convnextv2_config: ConvNextV2Config,
|
125 |
+
bert_config: BertConfig,
|
126 |
+
bloom_config: BloomConfig,
|
127 |
+
bloom_name: str,
|
128 |
+
use_frozen_bloom: bool = True,
|
129 |
+
) -> None:
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
if (
|
133 |
+
convnextv2_config.hidden_sizes[-1]
|
134 |
+
== bert_config.hidden_size
|
135 |
+
== bloom_config.hidden_size
|
136 |
+
):
|
137 |
+
self.use_projection = False
|
138 |
+
warnings.warn(
|
139 |
+
"All embedding dimensions are equal. No linear projection layers are created."
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
self.use_projection = True
|
143 |
+
self.text_to_cutie = nn.Linear(
|
144 |
+
bloom_config.hidden_size, bert_config.hidden_size
|
145 |
+
)
|
146 |
+
self.image_to_cutie = nn.Linear(
|
147 |
+
convnextv2_config.hidden_sizes[-1], bert_config.hidden_size
|
148 |
+
)
|
149 |
+
self.cutie_to_text = nn.Linear(
|
150 |
+
bert_config.hidden_size, bloom_config.hidden_size
|
151 |
+
)
|
152 |
+
|
153 |
+
self.cutie_model = Cutie(bert_config)
|
154 |
+
|
155 |
+
# Load and freeze BLOOM model
|
156 |
+
if use_frozen_bloom:
|
157 |
+
self.bloom_model = BloomForCausalLM.from_pretrained(bloom_name)
|
158 |
+
for param in self.bloom_model.parameters():
|
159 |
+
param.requires_grad = False
|
160 |
+
else:
|
161 |
+
self.bloom_model = BloomForCausalLM(bloom_config)
|
162 |
+
|
163 |
+
def forward(
|
164 |
+
self,
|
165 |
+
# Image model outputs - Q-former inputs
|
166 |
+
image_features: torch.Tensor,
|
167 |
+
image_attentions: torch.Tensor,
|
168 |
+
# Q-former inputs
|
169 |
+
instruction_input_ids: torch.Tensor,
|
170 |
+
instruction_attention_mask: torch.Tensor,
|
171 |
+
# Frozen language model inputs
|
172 |
+
language_model_input_ids: torch.Tensor,
|
173 |
+
language_model_attention_mask: torch.Tensor,
|
174 |
+
language_model_labels: torch.Tensor,
|
175 |
+
):
|
176 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings(
|
177 |
+
instruction_input_ids
|
178 |
+
)
|
179 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
180 |
+
instruction_embeds
|
181 |
+
)
|
182 |
+
|
183 |
+
if self.use_projection:
|
184 |
+
image_features = self.image_to_cutie(image_features)
|
185 |
+
instruction_embeds = self.text_to_cutie(instruction_embeds)
|
186 |
+
|
187 |
+
cutie_output = self.cutie_model(
|
188 |
+
image_features=image_features,
|
189 |
+
image_attentions=image_attentions,
|
190 |
+
instruction_embeds=instruction_embeds,
|
191 |
+
instruction_attention_mask=instruction_attention_mask,
|
192 |
+
)
|
193 |
+
|
194 |
+
if self.use_projection:
|
195 |
+
cutie_output = self.cutie_to_text(cutie_output)
|
196 |
+
|
197 |
+
cutie_attentions = self.cutie_model.query_attentions.expand(
|
198 |
+
cutie_output.size(0), -1
|
199 |
+
).to(cutie_output.device)
|
200 |
+
cutie_labels = self.cutie_model.query_labels.expand(
|
201 |
+
cutie_output.size(0), -1
|
202 |
+
).to(cutie_output.device)
|
203 |
+
|
204 |
+
language_model_embeds = self.bloom_model.transformer.word_embeddings(
|
205 |
+
language_model_input_ids
|
206 |
+
)
|
207 |
+
language_model_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
208 |
+
language_model_embeds
|
209 |
+
)
|
210 |
+
|
211 |
+
cat_embeds = torch.cat([cutie_output, language_model_embeds], dim=1)
|
212 |
+
cat_attentions = torch.cat(
|
213 |
+
[cutie_attentions, language_model_attention_mask], dim=1
|
214 |
+
)
|
215 |
+
cat_labels = torch.cat([cutie_labels, language_model_labels], dim=1)
|
216 |
+
|
217 |
+
bloom_outputs = self.bloom_model(
|
218 |
+
inputs_embeds=cat_embeds, attention_mask=cat_attentions, labels=cat_labels
|
219 |
+
)
|
220 |
+
return bloom_outputs
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def generate(
|
224 |
+
self,
|
225 |
+
# Image model outputs - Q-former inputs
|
226 |
+
image_features: torch.Tensor,
|
227 |
+
image_attentions: torch.Tensor,
|
228 |
+
# Q-former inputs
|
229 |
+
instruction_input_ids: torch.Tensor,
|
230 |
+
instruction_attention_mask: torch.Tensor,
|
231 |
+
):
|
232 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings(
|
233 |
+
instruction_input_ids
|
234 |
+
)
|
235 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
236 |
+
instruction_embeds
|
237 |
+
)
|
238 |
+
|
239 |
+
if self.use_projection:
|
240 |
+
image_features = self.image_to_cutie(image_features)
|
241 |
+
cutie_instruction_embeds = self.text_to_cutie(instruction_embeds)
|
242 |
+
|
243 |
+
cutie_output = self.cutie_model(
|
244 |
+
image_features=image_features,
|
245 |
+
image_attentions=image_attentions,
|
246 |
+
instruction_embeds=cutie_instruction_embeds,
|
247 |
+
instruction_attention_mask=instruction_attention_mask,
|
248 |
+
)
|
249 |
+
|
250 |
+
if self.use_projection:
|
251 |
+
cutie_output = self.cutie_to_text(cutie_output)
|
252 |
+
|
253 |
+
cutie_attentions = self.cutie_model.query_attentions.expand(
|
254 |
+
cutie_output.size(0), -1
|
255 |
+
).to(cutie_output.device)
|
256 |
+
|
257 |
+
cat_embeds = torch.cat([cutie_output, instruction_embeds], dim=1)
|
258 |
+
cat_attentions = torch.cat(
|
259 |
+
[cutie_attentions, instruction_attention_mask], dim=1
|
260 |
+
)
|
261 |
+
|
262 |
+
language_output = self.bloom_model.generate(
|
263 |
+
inputs_embeds=cat_embeds,
|
264 |
+
attention_mask=cat_attentions,
|
265 |
+
max_length=96,
|
266 |
+
penalty_alpha=0.6,
|
267 |
+
top_k=4,
|
268 |
+
)
|
269 |
+
return language_output
|
270 |
+
|
271 |
+
|
272 |
+
def setup_models(visual_bloom_state_dict_path: str):
|
273 |
+
image_model_name = "facebook/convnextv2-large-22k-224"
|
274 |
+
image_config = ConvNextV2Config.from_pretrained(image_model_name)
|
275 |
+
image_processor = ConvNextImageProcessor.from_pretrained(image_model_name)
|
276 |
+
image_model = ConvNextV2Model.from_pretrained(image_model_name)
|
277 |
+
image_feature_collator = ImageFeatureCollator(image_processor, image_model)
|
278 |
+
|
279 |
+
bloom_model_name = "bigscience/bloomz-1b7"
|
280 |
+
bloom_config = BloomConfig.from_pretrained(bloom_model_name)
|
281 |
+
tokenizer = BloomTokenizerFast.from_pretrained(bloom_model_name)
|
282 |
+
tokenizer.padding_side = "right"
|
283 |
+
|
284 |
+
bert_config = BertConfig(
|
285 |
+
hidden_size=1024,
|
286 |
+
num_hidden_layers=6,
|
287 |
+
num_attention_heads=16,
|
288 |
+
is_decoder=True,
|
289 |
+
add_cross_attention=True,
|
290 |
+
)
|
291 |
+
|
292 |
+
visual_bloom = VisualBloom(
|
293 |
+
image_config,
|
294 |
+
bert_config,
|
295 |
+
bloom_config,
|
296 |
+
bloom_model_name,
|
297 |
+
use_frozen_bloom=False,
|
298 |
+
)
|
299 |
+
visual_bloom.load_state_dict(torch.load(visual_bloom_state_dict_path))
|
300 |
+
visual_bloom = visual_bloom.eval()
|
301 |
+
return {
|
302 |
+
"visual_bloom": visual_bloom,
|
303 |
+
"tokenizer": tokenizer,
|
304 |
+
"image_feature_collator": image_feature_collator,
|
305 |
+
}
|
visual_bloom.torch
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18440703d035a942db21b82fe9aaf0d15895e46e97cfb7ae30217fa9c04daf0d
|
3 |
+
size 7265806579
|