File size: 7,023 Bytes
0227006
 
 
 
 
 
 
 
 
 
e05ec6c
 
 
 
 
 
 
 
 
 
 
a7cba30
e05ec6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0227006
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ec6c
0227006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ec6c
 
 
 
 
 
 
0227006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ec6c
 
 
 
 
 
 
0227006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ec6c
 
 
0227006
 
 
e05ec6c
 
 
 
0227006
e05ec6c
 
 
0227006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ec6c
 
 
0227006
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, List

import numpy as np
import pandas as pd
from datasets import load_dataset

from content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
from utils import make_clickable_model
from visualizations import (
    get_bootstrap_result,
    switch_model_a_b,
    visualize_battle_count,
    visualize_bootstrap_scores,
    visualize_pairwise_win_fraction,
    visualize_rating_count,
)


KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
MODEL_PAGE = "https://huggingface.co/models"


def make_clickable_model_elo(model_name):
    link = ""
    if model_name == "dolly-12b":
        link = DOLLY_LINK
    elif model_name == "vicuna-13b":
        link = VICUNA_LINK
    elif model_name == "koala-13b":
        link = KOALA_LINK
    elif model_name == "oasst-12b":
        link = OASST_LINK
    else:
        link = MODEL_PAGE

    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


@dataclass
class EloEvalResult:
    model: str
    gpt_4_all: int
    human_all: int
    human_instruct: int
    human_code_instruct: int
    tie_allowed: bool

    def to_dict(self):
        base_model = f"{self.model}"
        data_dict = {}
        data_dict["Model"] = make_clickable_model_elo(base_model)
        data_dict["GPT-4 (all)"] = self.gpt_4_all
        data_dict["Human (all)"] = self.human_all
        data_dict["Human (instruct)"] = self.human_instruct
        data_dict["Human (code-instruct)"] = self.human_code_instruct

        return data_dict


def create_eval_df(df, tie_allowed):
    responses = []
    for _, row in df.iterrows():
        if row["status"] == "canceled":
            continue

        rating = row["response"]["annotations"]["Preference"]
        if rating == "NaN":
            continue

        scores = row["response"]["responses"]
        if any(s["Preference"] == "" for s in scores):
            continue

        response = {
            "id": row["task_id"],
            "prompt": row["params"]["templateVariables"]["prompt"],
            "model_a": row["params"]["templateVariables"]["modela"],
            "model_b": row["params"]["templateVariables"]["modelb"],
            "response_a": row["params"]["templateVariables"]["response1"],
            "response_b": row["params"]["templateVariables"]["response2"],
            "rating": int(rating),
            "ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)],
        }

        if tie_allowed:
            response["win"] = (
                "model_a"
                if response["rating"] < 4
                else "model_b"
                if response["rating"] > 5
                else "tie"
            )
        else:
            response["win"] = "model_a" if response["rating"] < 5 else "model_b"

        responses.append(response)

    return pd.DataFrame(responses)


def create_eval_df_for_gpt(df, tie_allowed):
    responses = []
    for _, row in df.iterrows():
        response = {
            "id": row["review_id"],
            "prompt": row["question"],
            "model_a": row["model1"],
            "model_b": row["model2"],
            "response_a": row["answer1"],
            "response_b": row["answer2"],
            "rating": row["score"][0],
        }

        if tie_allowed:
            response["win"] = (
                "model_a"
                if response["rating"] < 4
                else "model_b"
                if response["rating"] > 5
                else "tie"
            )
        else:
            response["win"] = "model_a" if response["rating"] < 5 else "model_b"

        responses.append(response)

    return pd.DataFrame(responses)


# Compute the Elo rating for each model
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000):
    rating = defaultdict(lambda: initial_rating)

    for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples():
        ra = rating[model_a]
        rb = rating[model_b]
        ea = 1 / (1 + base ** ((rb - ra) / scale))
        eb = 1 / (1 + base ** ((ra - rb) / scale))
        if win == "model_a":
            sa = 1
        elif win == "model_b":
            sa = 0
        elif win == "tie" or win == "tie (bothbad)":
            sa = 0.5
        else:
            raise Exception(f"unexpected vote {win}")
        rating[model_a] += k * (sa - ea)
        rating[model_b] += k * (1 - sa - eb)

    return rating


def convert_rating_from_float_to_int(df):
    return {model: int(rating) for model, rating in compute_elo(df).items()}


def get_elo_results(df_instruct, df_code_instruct, tie_allowed):
    df_all = pd.concat([df_instruct, df_code_instruct])

    df_gpt_4 = load_dataset(
        "gpt_4_evals/data/",
        split="train",
        revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846",
    ).to_pandas()

    dfs = [df_instruct, df_code_instruct, df_all]
    elo_ratings = [
        convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed))
        for df in dfs
    ]

    gpt_4_elo_ratings = convert_rating_from_float_to_int(
        create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed)
    )
    elo_ratings.append(gpt_4_elo_ratings)

    results = [
        EloEvalResult(
            model=model_name,
            gpt_4_all=elo_ratings[3][model_name],
            human_all=elo_ratings[2][model_name],
            human_instruct=elo_ratings[0][model_name],
            human_code_instruct=elo_ratings[1][model_name],
            tie_allowed=tie_allowed,
        )
        for model_name in elo_ratings[0].keys()
    ]

    return results


def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]:
    eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed)
    return [r.to_dict() for r in eval_results]


def get_elo_plots(df_instruct, df_code_instruct, tie_allowed):
    df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed)
    df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed)
    df_all = pd.concat([df_instruct, df_code_instruct])
    game = df_all[["model_a", "model_b", "win"]]

    game_switch = switch_model_a_b(game)
    plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE)

    plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE)

    BOOTSTRAP_ROUNDS = 1000
    if "bootstrap_elo_lu" not in globals():
        bootstrap_elo_lu = get_bootstrap_result(
            game_switch, compute_elo, BOOTSTRAP_ROUNDS
        )

    plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE)

    plot_4 = visualize_rating_count(game, PLOT_4_TITLE)

    return plot_1, plot_2, plot_3, plot_4