Spaces:
Build error
Build error
divyanshusingh
commited on
Commit
•
617be15
1
Parent(s):
8705444
Update model.py
Browse files
model.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
from dotenv import load_dotenv
|
@@ -8,16 +9,36 @@ try:
|
|
8 |
except:
|
9 |
PINECONE_API_KEY = subprocess.check_output(["bash", "-c", "echo ${{ secrets.PINECONE_API_KEY }}"]).decode("utf-8").strip()
|
10 |
|
11 |
-
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
import pinecone
|
14 |
import torch
|
15 |
from langchain import PromptTemplate, LLMChain,HuggingFacePipeline
|
16 |
from langchain.vectorstores import Pinecone
|
17 |
-
from langchain.
|
18 |
-
from langchain.chains import RetrievalQA
|
19 |
from transformers import pipeline
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def get_llm(model_name,pinecone_index,llm):
|
22 |
# model_name = "bert-large-uncased" #"t5-large"
|
23 |
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
@@ -31,7 +52,7 @@ def get_llm(model_name,pinecone_index,llm):
|
|
31 |
)
|
32 |
|
33 |
index = pinecone.Index(pinecone_index)
|
34 |
-
print(index.describe_index_stats())
|
35 |
|
36 |
docsearch = Pinecone(index, embeddings.embed_query,"text")
|
37 |
|
|
|
1 |
+
|
2 |
import os
|
3 |
import subprocess
|
4 |
from dotenv import load_dotenv
|
|
|
9 |
except:
|
10 |
PINECONE_API_KEY = subprocess.check_output(["bash", "-c", "echo ${{ secrets.PINECONE_API_KEY }}"]).decode("utf-8").strip()
|
11 |
|
12 |
+
from typing import Optional,List,Mapping,Any
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
import pinecone
|
15 |
import torch
|
16 |
from langchain import PromptTemplate, LLMChain,HuggingFacePipeline
|
17 |
from langchain.vectorstores import Pinecone
|
18 |
+
from langchain.llms.base import LLM
|
|
|
19 |
from transformers import pipeline
|
20 |
|
21 |
+
class CustomLLM(LLM):
|
22 |
+
# def __init__(self,model_name,pipeline):
|
23 |
+
model_name ="databricks/dolly-v2-3b"
|
24 |
+
num_output = 128
|
25 |
+
pipeline = pipeline(model=model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto",
|
26 |
+
return_full_text=True, do_sample=False, max_new_tokens=128)
|
27 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
28 |
+
prompt_length = len(prompt)
|
29 |
+
response = self.pipeline(prompt, max_new_tokens=self.num_output)[0]["generated_text"]
|
30 |
+
|
31 |
+
# only return newly generated tokens
|
32 |
+
return response[prompt_length:]
|
33 |
+
|
34 |
+
@property
|
35 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
36 |
+
return {"name_of_model": self.model_name}
|
37 |
+
|
38 |
+
@property
|
39 |
+
def _llm_type(self) -> str:
|
40 |
+
return "custom"
|
41 |
+
|
42 |
def get_llm(model_name,pinecone_index,llm):
|
43 |
# model_name = "bert-large-uncased" #"t5-large"
|
44 |
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
|
|
52 |
)
|
53 |
|
54 |
index = pinecone.Index(pinecone_index)
|
55 |
+
# print(index.describe_index_stats())
|
56 |
|
57 |
docsearch = Pinecone(index, embeddings.embed_query,"text")
|
58 |
|