djuna's picture
Fix: cli
50ef1f9 verified
import os
import pathlib
import random
import string
import tempfile
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List
import gradio as gr
import huggingface_hub
import torch
import yaml
import bitsandbytes
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
from clean_community_org import garbage_collect_empty_models
has_gpu = torch.cuda.is_available()
# Running directly from Python doesn't work well with Gradio+run_process because of:
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
# Let's use the CLI instead.
#
# import mergekit.merge
# from mergekit.common import parse_kmb
# from mergekit.options import MergeOptions
#
# merge_options = (
# MergeOptions(
# copy_tokenizer=True,
# cuda=True,
# low_cpu_memory=True,
# write_model_card=True,
# )
# if has_gpu
# else MergeOptions(
# allow_crimes=True,
# out_shard_size=parse_kmb("1B"),
# lazy_unpickle=True,
# write_model_card=True,
# )
# )
cli = "config.yaml merge --copy-tokenizer" + (
" --cuda --low-cpu-memory --allow-crimes" if has_gpu else " --allow-crimes --lazy-unpickle"
)
MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge πŸ”₯
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""
MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | βœ… | ❌ |
| SLERP | `slerp` | ❌ | βœ… |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | βœ… | βœ… |
| [TIES](https://arxiv.org/abs/2306.01708) | `ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | βœ… | βœ… |
| Passthrough | `passthrough` | ❌ | ❌ |
| [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | βœ… | βœ… |
## Citation
This GUI is powered by [Arcee's MergeKit](https://arxiv.org/abs/2403.13257).
If you use it in your research, please cite the following paper:
```
@article{goddard2024arcee,
title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
journal={arXiv preprint arXiv:2403.13257},
year={2024}
}
```
This Space is heavily inspired by LazyMergeKit by Maxime Labonne (see [Colab](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb)).
"""
examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]
# Do not set community token as `HF_TOKEN` to avoid accidentally using it in merge scripts.
# `COMMUNITY_HF_TOKEN` is used to upload models to the community organization (https://huggingface.co/djuna-test-lab)
# when user do not provide a token.
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")
def merge(program: str, yaml_config: str, out_shard_size: str, hf_token: str, repo_name: str) -> Iterable[List[Log]]:
runner = LogsViewRunner()
if not yaml_config:
yield runner.log("Empty yaml, pick an example below", level="ERROR")
return
# TODO: validate moe config and mega config?
if program not in ("mergekit-moe", "mergekit-mega"):
try:
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
except Exception as e:
yield runner.log(f"Invalid yaml {e}", level="ERROR")
return
is_community_model = False
if not hf_token:
if "/" in repo_name and not repo_name.startswith("djuna-test-lab/"):
yield runner.log(
f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
level="ERROR",
)
return
yield runner.log(
"No HF token provided. Your merged model will be uploaded to the https://huggingface.co/djuna-test-lab organization."
)
is_community_model = True
if not COMMUNITY_HF_TOKEN:
raise gr.Error("Cannot upload to community org: community token not set by Space owner.")
hf_token = COMMUNITY_HF_TOKEN
api = huggingface_hub.HfApi(token=hf_token)
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
config_path = merged_path / "config.yaml"
config_path.write_text(yaml_config)
yield runner.log(f"Merge configuration saved in {config_path}")
if not repo_name:
yield runner.log("No repo name provided. Generating a random one.")
repo_name = f"mergekit-{merge_config.merge_method}"
# Make repo_name "unique" (no need to be extra careful on uniqueness)
repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
repo_name = repo_name.replace("/", "-").strip("-")
if is_community_model and not repo_name.startswith("djuna-test-lab/"):
repo_name = f"djuna-test-lab/{repo_name}"
try:
yield runner.log(f"Creating repo {repo_name}")
repo_url = api.create_repo(repo_name, exist_ok=True)
yield runner.log(f"Repo created: {repo_url}")
except Exception as e:
yield runner.log(f"Error creating repo {e}", level="ERROR")
return
# Set tmp HF_HOME to avoid filling up disk Space
tmp_env = os.environ.copy() # taken from https://stackoverflow.com/a/4453495
tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
full_cli = f"{program} {cli} --lora-merge-cache {tmpdirname}/.lora_cache --out-shard-size {out_shard_size}"
yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)
if runner.exit_code != 0:
yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
api.delete_repo(repo_url.repo_id)
return
yield runner.log("Model merged successfully. Uploading to HF.")
yield from runner.run_python(
api.upload_folder,
repo_id=repo_url.repo_id,
folder_path=merged_path / "merge",
)
yield runner.log(f"Model successfully uploaded to HF: {repo_url.repo_id}")
def extract(finetuned_model: str, base_model: str, rank: int, hf_token: str, repo_name: str) -> Iterable[List[Log]]:
runner = LogsViewRunner()
if not finetuned_model or not base_model:
yield runner.log("All field should be filled")
is_community_model = False
if not hf_token:
if "/" in repo_name and not repo_name.startswith("djuna-test-lab/"):
yield runner.log(
f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
level="ERROR",
)
return
yield runner.log(
"No HF token provided. Your lora will be uploaded to the https://huggingface.co/djuna-test-lab organization."
)
is_community_model = True
if not COMMUNITY_HF_TOKEN:
raise gr.Error("Cannot upload to community org: community token not set by Space owner.")
hf_token = COMMUNITY_HF_TOKEN
api = huggingface_hub.HfApi(token=hf_token)
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
if not repo_name:
yield runner.log("No repo name provided. Generating a random one.")
repo_name = "lora"
# Make repo_name "unique" (no need to be extra careful on uniqueness)
repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
repo_name = repo_name.replace("/", "-").strip("-")
if is_community_model and not repo_name.startswith("djuna-test-lab/"):
repo_name = f"djuna-test-lab/{repo_name}"
try:
yield runner.log(f"Creating repo {repo_name}")
repo_url = api.create_repo(repo_name, exist_ok=True)
yield runner.log(f"Repo created: {repo_url}")
except Exception as e:
yield runner.log(f"Error creating repo {e}", level="ERROR")
return
# Set tmp HF_HOME to avoid filling up disk Space
tmp_env = os.environ.copy() # taken from https://stackoverflow.com/a/4453495
tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
full_cli = f"mergekit-extract-lora {finetuned_model} {base_model} lora --rank={rank}"
yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)
if runner.exit_code != 0:
yield runner.log("Lora extraction failed. Deleting repo as no lora is uploaded.", level="ERROR")
api.delete_repo(repo_url.repo_id)
return
yield runner.log("Lora extracted successfully. Uploading to HF.")
yield from runner.run_python(
api.upload_folder,
repo_id=repo_url.repo_id,
folder_path=merged_path / "lora",
)
yield runner.log(f"Lora successfully uploaded to HF: {repo_url.repo_id}")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN_DESCRIPTION)
with gr.Tabs():
with gr.TabItem("Merge Model"):
with gr.Row():
filename = gr.Textbox(visible=False, label="filename")
config = gr.Code(language="yaml", lines=10, label="config.yaml")
with gr.Column():
program = gr.Dropdown(
["mergekit-yaml", "mergekit-mega", "mergekit-moe"],
label="Mergekit Command",
info="Choose CLI",
)
out_shard_size = gr.Dropdown(
["500M", "1B", "2B", "3B", "4B", "5B"],
label="Output Shard Size",
value="500M",
)
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="Optional. Will create a random name if empty.",
)
button = gr.Button("Merge", variant="primary")
logs = LogsView(label="Terminal output")
button.click(fn=merge, inputs=[program, config, out_shard_size, token, repo_name], outputs=[logs])
with gr.TabItem("LORA Extraction"):
with gr.Row():
with gr.Column():
finetuned_model = gr.Textbox(
lines=1,
label="Finetuned Model",
)
base_model = gr.Textbox(
lines=1,
label="Base Model",
)
rank = gr.Dropdown(
[32, 64, 128],
label="Rank level",
value=32,
)
with gr.Column():
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="Optional. Will create a random name if empty.",
)
button = gr.Button("Extract LORA", variant="primary")
logs = LogsView(label="Terminal output")
button.click(fn=extract, inputs=[finetuned_model, base_model, rank, token, repo_name], outputs=[logs])
gr.Examples(
examples,
fn=lambda s: (s,),
run_on_click=True,
label="Examples",
inputs=[filename],
outputs=[config],
)
gr.Markdown(MARKDOWN_ARTICLE)
# Run garbage collection every hour to keep the community org clean.
# Empty models might exist if the merge fails abruptly (e.g. if user leaves the Space).
def _garbage_collect_every_hour():
while True:
try:
garbage_collect_empty_models(token=COMMUNITY_HF_TOKEN)
except Exception as e:
print("Error running garbage collection", e)
time.sleep(3600)
pool = ThreadPoolExecutor()
pool.submit(_garbage_collect_every_hour)
demo.queue(default_concurrency_limit=1).launch()