Spaces:
Paused
Paused
File size: 5,048 Bytes
32562a3 751c042 3878f81 b34b7d7 0770449 b34b7d7 0770449 5f76223 0770449 b34b7d7 5f76223 443105b 0770449 5f76223 0770449 d13603d 0770449 32562a3 2c3245b d13603d 2c3245b d13603d 2c3245b 5f76223 2c3245b 5f76223 2c3245b d13603d 2c3245b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import pickle
import uvicorn
import logging
import os
import shutil
import subprocess
import torch
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from werkzeug.utils import secure_filename
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
system_message = """
you are a helpful, respectful and honest assistant. you should only respond to the following topics: water, climate, global warming, NASA data and geography. Always answer in the most helpful and safe way possible. Your answers should not include harmful, unethical, racist, sexist, toxic, dangerous or illegal content. Make sure that your answers are socially unbiased and positive in nature, as well as sticking to the topics of water, climate, global warming, NASA data and geography.
If a question doesn't make sense or isn't factually coherent, explain that only questions on the topics of water, climate, global warming, NASA data and geography are accepted. If you don't know the answer to a question, don't share false information.
"""
class Predict(BaseModel):
prompt: str
app = FastAPI()
app.mount("/", StaticFiles(directory="static"), name="static")
@app.post('/predict')
async def predict(data: Predict):
input_prompt = data.prompt
user_prompt = system_message + " " + input_prompt
if user_prompt:
# print(f'User Prompt: {user_prompt}')
# Get the answer from the chain
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
@app.get("/run_ingest")
def run_ingest_route():
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
response = "Script executed successfully: {}".format(result.stdout.decode("utf-8"))
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
|