Spaces:
Paused
Paused
Daniel Marques
commited on
Commit
·
fe4b5f1
1
Parent(s):
6229292
feat: add prompt template
Browse files- main.py +11 -5
- static/index.html +1 -1
main.py
CHANGED
@@ -13,6 +13,7 @@ import subprocess
|
|
13 |
import torch
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
16 |
|
17 |
# from langchain.embeddings import HuggingFaceEmbeddings
|
18 |
from run_localGPT import load_model
|
@@ -49,20 +50,25 @@ RETRIEVER = DB.as_retriever()
|
|
49 |
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
50 |
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
QA = RetrievalQA.from_chain_type(
|
53 |
llm=LLM,
|
54 |
chain_type="stuff",
|
55 |
retriever=RETRIEVER,
|
56 |
return_source_documents=SHOW_SOURCES,
|
57 |
chain_type_kwargs={
|
58 |
-
"prompt":
|
59 |
},
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
If a question doesn't make sense or isn't factually coherent, explain that only questions on the topics of water, climate, global warming, NASA data and geography are accepted. If you don't know the answer to a question, don't share false information.
|
65 |
-
"""
|
66 |
|
67 |
class Predict(BaseModel):
|
68 |
prompt: str
|
|
|
13 |
import torch
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
16 |
+
from langchain.prompts import PromptTemplate
|
17 |
|
18 |
# from langchain.embeddings import HuggingFaceEmbeddings
|
19 |
from run_localGPT import load_model
|
|
|
50 |
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
51 |
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
|
52 |
|
53 |
+
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
|
54 |
+
{context}
|
55 |
+
Question: {question}
|
56 |
+
Helpful Answer:"""
|
57 |
+
|
58 |
+
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
|
59 |
+
|
60 |
QA = RetrievalQA.from_chain_type(
|
61 |
llm=LLM,
|
62 |
chain_type="stuff",
|
63 |
retriever=RETRIEVER,
|
64 |
return_source_documents=SHOW_SOURCES,
|
65 |
chain_type_kwargs={
|
66 |
+
"prompt": QA_CHAIN_PROMPT,
|
67 |
},
|
68 |
)
|
69 |
|
70 |
+
|
71 |
+
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
|
|
|
|
|
72 |
|
73 |
class Predict(BaseModel):
|
74 |
prompt: str
|
static/index.html
CHANGED
@@ -240,7 +240,7 @@
|
|
240 |
</style>
|
241 |
<body>
|
242 |
<div class="container">
|
243 |
-
<div class="titlegpt">
|
244 |
</div>
|
245 |
</body>
|
246 |
</html>
|
|
|
240 |
</style>
|
241 |
<body>
|
242 |
<div class="container">
|
243 |
+
<div class="titlegpt">KARATA LLA</div>
|
244 |
</div>
|
245 |
</body>
|
246 |
</html>
|