import requests from bs4 import BeautifulSoup from tqdm import tqdm import chainlit as cl from langchain import PromptTemplate import requests from bs4 import BeautifulSoup from urllib.parse import urlparse, urljoin, urldefrag import asyncio import aiohttp from aiohttp import ClientSession try: from modules.constants import * except: from constants import * """ Ref: https://python.plainenglish.io/scraping-the-subpages-on-a-website-ea2d4e3db113 """ class WebpageCrawler: def __init__(self): self.dict_href_links = {} async def fetch(self, session: ClientSession, url: str) -> str: async with session.get(url) as response: try: return await response.text() except UnicodeDecodeError: return await response.text(encoding="latin1") def url_exists(self, url: str) -> bool: try: response = requests.head(url) return response.status_code == 200 except requests.ConnectionError: return False async def get_links(self, session: ClientSession, website_link: str, base_url: str): html_data = await self.fetch(session, website_link) soup = BeautifulSoup(html_data, "html.parser") list_links = [] for link in soup.find_all("a", href=True): href = link["href"].strip() full_url = urljoin(base_url, href) normalized_url = self.normalize_url(full_url) # sections removed if ( normalized_url not in self.dict_href_links and self.is_child_url(normalized_url, base_url) and self.url_exists(normalized_url) ): self.dict_href_links[normalized_url] = None list_links.append(normalized_url) return list_links async def get_subpage_links( self, session: ClientSession, urls: list, base_url: str ): tasks = [self.get_links(session, url, base_url) for url in urls] results = await asyncio.gather(*tasks) all_links = [link for sublist in results for link in sublist] return all_links async def get_all_pages(self, url: str, base_url: str): async with aiohttp.ClientSession() as session: dict_links = {url: "Not-checked"} counter = None while counter != 0: unchecked_links = [ link for link, status in dict_links.items() if status == "Not-checked" ] if not unchecked_links: break new_links = await self.get_subpage_links( session, unchecked_links, base_url ) for link in unchecked_links: dict_links[link] = "Checked" print(f"Checked: {link}") dict_links.update( { link: "Not-checked" for link in new_links if link not in dict_links } ) counter = len( [ status for status in dict_links.values() if status == "Not-checked" ] ) checked_urls = [ url for url, status in dict_links.items() if status == "Checked" ] return checked_urls def is_webpage(self, url: str) -> bool: try: response = requests.head(url, allow_redirects=True) content_type = response.headers.get("Content-Type", "").lower() return "text/html" in content_type except requests.RequestException: return False def clean_url_list(self, urls): files, webpages = [], [] for url in urls: if self.is_webpage(url): webpages.append(url) else: files.append(url) return files, webpages def is_child_url(self, url, base_url): return url.startswith(base_url) def normalize_url(self, url: str): # Strip the fragment identifier defragged_url, _ = urldefrag(url) return defragged_url def get_urls_from_file(file_path: str): """ Function to get urls from a file """ with open(file_path, "r") as f: urls = f.readlines() urls = [url.strip() for url in urls] return urls def get_base_url(url): parsed_url = urlparse(url) base_url = f"{parsed_url.scheme}://{parsed_url.netloc}/" return base_url def get_prompt(config): if config["llm_params"]["use_history"]: if config["llm_params"]["llm_loader"] == "local_llm": custom_prompt_template = tinyllama_prompt_template_with_history elif config["llm_params"]["llm_loader"] == "openai": custom_prompt_template = openai_prompt_template_with_history # else: # custom_prompt_template = tinyllama_prompt_template_with_history # default prompt = PromptTemplate( template=custom_prompt_template, input_variables=["context", "chat_history", "question"], ) else: if config["llm_params"]["llm_loader"] == "local_llm": custom_prompt_template = tinyllama_prompt_template elif config["llm_params"]["llm_loader"] == "openai": custom_prompt_template = openai_prompt_template # else: # custom_prompt_template = tinyllama_prompt_template prompt = PromptTemplate( template=custom_prompt_template, input_variables=["context", "question"], ) return prompt def get_sources(res, answer): source_elements = [] source_dict = {} # Dictionary to store URL elements for idx, source in enumerate(res["source_documents"]): source_metadata = source.metadata url = source_metadata["source"] score = source_metadata.get("score", "N/A") page = source_metadata.get("page", 1) date = source_metadata.get("date", "N/A") url_name = f"{url}_{page}" if url_name not in source_dict: source_dict[url_name] = { "text": source.page_content, "url": url, "score": score, "page": page, "date": date, } else: source_dict[url_name]["text"] += f"\n\n{source.page_content}" # First, display the answer full_answer = "**Answer:**\n" full_answer += answer # Then, display the sources full_answer += "\n\n**Sources:**\n" for idx, (url_name, source_data) in enumerate(source_dict.items()): full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n" name = f"Source {idx + 1} Text\n" full_answer += name source_elements.append( cl.Text(name=name, content=source_data["text"], display="side") ) # Add a PDF element if the source is a PDF file if source_data["url"].lower().endswith(".pdf"): name = f"Source {idx + 1} PDF\n" full_answer += name pdf_url = f"{source_data['url']}#page={source_data['page']+1}" source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side")) full_answer += "\n**Metadata:**\n" for idx, (url_name, source_data) in enumerate(source_dict.items()): full_answer += f"Source {idx+1} Metadata\n" source_elements.append( cl.Text( name=f"Source {idx+1} Metadata", content=f"Page: {source_data['page']}\nDate: {source_data['date']}\n", display="side", ) ) return full_answer, source_elements def get_metadata(file_names): """ Function to get any additional metadata from the files Returns a dict with the file_name: {metadata: value} """ metadata_dict = {} for file in file_names: metadata_dict[file] = { "source_type": "N/A", } return metadata_dict