File size: 12,244 Bytes
b83cc65 a052bdc f0018f2 6d056d5 57b7b8d ce9ef3e b83cc65 6d056d5 b83cc65 6d056d5 b83cc65 6d056d5 b83cc65 6d056d5 b83cc65 6d056d5 dbc26b1 6d056d5 dbc26b1 6d056d5 b83cc65 57b7b8d a052bdc b83cc65 57b7b8d b83cc65 57b7b8d f0018f2 b2c9100 b83cc65 f0018f2 b2c9100 f0018f2 b83cc65 f0018f2 b83cc65 f0018f2 b83cc65 f0018f2 6d056d5 f0018f2 6d056d5 f0018f2 6d056d5 f0018f2 6d056d5 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 b2c9100 f0018f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
import chainlit as cl
from langchain import PromptTemplate
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse, urljoin, urldefrag
import asyncio
import aiohttp
from aiohttp import ClientSession
from typing import Dict, Any, List
try:
from modules.constants import *
except:
from constants import *
"""
Ref: https://python.plainenglish.io/scraping-the-subpages-on-a-website-ea2d4e3db113
"""
class WebpageCrawler:
def __init__(self):
self.dict_href_links = {}
async def fetch(self, session: ClientSession, url: str) -> str:
async with session.get(url) as response:
try:
return await response.text()
except UnicodeDecodeError:
return await response.text(encoding="latin1")
def url_exists(self, url: str) -> bool:
try:
response = requests.head(url)
return response.status_code == 200
except requests.ConnectionError:
return False
async def get_links(self, session: ClientSession, website_link: str, base_url: str):
html_data = await self.fetch(session, website_link)
soup = BeautifulSoup(html_data, "html.parser")
list_links = []
for link in soup.find_all("a", href=True):
href = link["href"].strip()
full_url = urljoin(base_url, href)
normalized_url = self.normalize_url(full_url) # sections removed
if (
normalized_url not in self.dict_href_links
and self.is_child_url(normalized_url, base_url)
and self.url_exists(normalized_url)
):
self.dict_href_links[normalized_url] = None
list_links.append(normalized_url)
return list_links
async def get_subpage_links(
self, session: ClientSession, urls: list, base_url: str
):
tasks = [self.get_links(session, url, base_url) for url in urls]
results = await asyncio.gather(*tasks)
all_links = [link for sublist in results for link in sublist]
return all_links
async def get_all_pages(self, url: str, base_url: str):
async with aiohttp.ClientSession() as session:
dict_links = {url: "Not-checked"}
counter = None
while counter != 0:
unchecked_links = [
link
for link, status in dict_links.items()
if status == "Not-checked"
]
if not unchecked_links:
break
new_links = await self.get_subpage_links(
session, unchecked_links, base_url
)
for link in unchecked_links:
dict_links[link] = "Checked"
print(f"Checked: {link}")
dict_links.update(
{
link: "Not-checked"
for link in new_links
if link not in dict_links
}
)
counter = len(
[
status
for status in dict_links.values()
if status == "Not-checked"
]
)
checked_urls = [
url for url, status in dict_links.items() if status == "Checked"
]
return checked_urls
def is_webpage(self, url: str) -> bool:
try:
response = requests.head(url, allow_redirects=True)
content_type = response.headers.get("Content-Type", "").lower()
return "text/html" in content_type
except requests.RequestException:
return False
def clean_url_list(self, urls):
files, webpages = [], []
for url in urls:
if self.is_webpage(url):
webpages.append(url)
else:
files.append(url)
return files, webpages
def is_child_url(self, url, base_url):
return url.startswith(base_url)
def normalize_url(self, url: str):
# Strip the fragment identifier
defragged_url, _ = urldefrag(url)
return defragged_url
def get_urls_from_file(file_path: str):
"""
Function to get urls from a file
"""
with open(file_path, "r") as f:
urls = f.readlines()
urls = [url.strip() for url in urls]
return urls
def get_base_url(url):
parsed_url = urlparse(url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}/"
return base_url
def get_prompt(config):
if config["llm_params"]["use_history"]:
if config["llm_params"]["llm_loader"] == "local_llm":
custom_prompt_template = tinyllama_prompt_template_with_history
elif config["llm_params"]["llm_loader"] == "openai":
custom_prompt_template = openai_prompt_template_with_history
# else:
# custom_prompt_template = tinyllama_prompt_template_with_history # default
prompt = PromptTemplate(
template=custom_prompt_template,
input_variables=["context", "chat_history", "question"],
)
else:
if config["llm_params"]["llm_loader"] == "local_llm":
custom_prompt_template = tinyllama_prompt_template
elif config["llm_params"]["llm_loader"] == "openai":
custom_prompt_template = openai_prompt_template
# else:
# custom_prompt_template = tinyllama_prompt_template
prompt = PromptTemplate(
template=custom_prompt_template,
input_variables=["context", "question"],
)
return prompt
def get_sources(res, answer):
source_elements = []
source_dict = {} # Dictionary to store URL elements
for idx, source in enumerate(res["source_documents"]):
source_metadata = source.metadata
url = source_metadata["source"]
score = source_metadata.get("score", "N/A")
page = source_metadata.get("page", 1)
lecture_tldr = source_metadata.get("tldr", "N/A")
lecture_recording = source_metadata.get("lecture_recording", "N/A")
suggested_readings = source_metadata.get("suggested_readings", "N/A")
date = source_metadata.get("date", "N/A")
source_type = source_metadata.get("source_type", "N/A")
url_name = f"{url}_{page}"
if url_name not in source_dict:
source_dict[url_name] = {
"text": source.page_content,
"url": url,
"score": score,
"page": page,
"lecture_tldr": lecture_tldr,
"lecture_recording": lecture_recording,
"suggested_readings": suggested_readings,
"date": date,
"source_type": source_type,
}
else:
source_dict[url_name]["text"] += f"\n\n{source.page_content}"
# First, display the answer
full_answer = "**Answer:**\n"
full_answer += answer
# Then, display the sources
full_answer += "\n\n**Sources:**\n"
for idx, (url_name, source_data) in enumerate(source_dict.items()):
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
name = f"Source {idx + 1} Text\n"
full_answer += name
source_elements.append(
cl.Text(name=name, content=source_data["text"], display="side")
)
# Add a PDF element if the source is a PDF file
if source_data["url"].lower().endswith(".pdf"):
name = f"Source {idx + 1} PDF\n"
full_answer += name
pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side"))
full_answer += "\n**Metadata:**\n"
for idx, (url_name, source_data) in enumerate(source_dict.items()):
full_answer += f"\nSource {idx + 1} Metadata:\n"
source_elements.append(
cl.Text(
name=f"Source {idx + 1} Metadata",
content=f"Source: {source_data['url']}\n"
f"Page: {source_data['page']}\n"
f"Type: {source_data['source_type']}\n"
f"Date: {source_data['date']}\n"
f"TL;DR: {source_data['lecture_tldr']}\n"
f"Lecture Recording: {source_data['lecture_recording']}\n"
f"Suggested Readings: {source_data['suggested_readings']}\n",
display="side",
)
)
return full_answer, source_elements
def get_metadata(lectures_url, schedule_url):
"""
Function to get the lecture metadata from the lectures and schedule URLs.
"""
lecture_metadata = {}
# Get the main lectures page content
r_lectures = requests.get(lectures_url)
soup_lectures = BeautifulSoup(r_lectures.text, "html.parser")
# Get the main schedule page content
r_schedule = requests.get(schedule_url)
soup_schedule = BeautifulSoup(r_schedule.text, "html.parser")
# Find all lecture blocks
lecture_blocks = soup_lectures.find_all("div", class_="lecture-container")
# Create a mapping from slides link to date
date_mapping = {}
schedule_rows = soup_schedule.find_all("li", class_="table-row-lecture")
for row in schedule_rows:
try:
date = (
row.find("div", {"data-label": "Date"}).get_text(separator=" ").strip()
)
description_div = row.find("div", {"data-label": "Description"})
slides_link_tag = description_div.find("a", title="Download slides")
slides_link = slides_link_tag["href"].strip() if slides_link_tag else None
slides_link = (
f"https://dl4ds.github.io{slides_link}" if slides_link else None
)
if slides_link:
date_mapping[slides_link] = date
except Exception as e:
print(f"Error processing schedule row: {e}")
continue
for block in lecture_blocks:
try:
# Extract the lecture title
title = block.find("span", style="font-weight: bold;").text.strip()
# Extract the TL;DR
tldr = block.find("strong", text="tl;dr:").next_sibling.strip()
# Extract the link to the slides
slides_link_tag = block.find("a", title="Download slides")
slides_link = slides_link_tag["href"].strip() if slides_link_tag else None
slides_link = (
f"https://dl4ds.github.io{slides_link}" if slides_link else None
)
# Extract the link to the lecture recording
recording_link_tag = block.find("a", title="Download lecture recording")
recording_link = (
recording_link_tag["href"].strip() if recording_link_tag else None
)
# Extract suggested readings or summary if available
suggested_readings_tag = block.find("p", text="Suggested Readings:")
if suggested_readings_tag:
suggested_readings = suggested_readings_tag.find_next_sibling("ul")
if suggested_readings:
suggested_readings = suggested_readings.get_text(
separator="\n"
).strip()
else:
suggested_readings = "No specific readings provided."
else:
suggested_readings = "No specific readings provided."
# Get the date from the schedule
date = date_mapping.get(slides_link, "No date available")
# Add to the dictionary
lecture_metadata[slides_link] = {
"date": date,
"tldr": tldr,
"title": title,
"lecture_recording": recording_link,
"suggested_readings": suggested_readings,
}
except Exception as e:
print(f"Error processing block: {e}")
continue
return lecture_metadata
|