File size: 1,487 Bytes
e029e22 f51bb92 b83cc65 f51bb92 b83cc65 e029e22 6158da4 b83cc65 6158da4 e029e22 b83cc65 e029e22 b83cc65 6158da4 e029e22 6158da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from langchain_openai import ChatOpenAI
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoTokenizer, TextStreamer
from langchain_community.llms import LlamaCpp
import torch
import transformers
import os
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from modules.config.constants import LLAMA_PATH
class ChatModelLoader:
def __init__(self, config):
self.config = config
self.huggingface_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
def load_chat_model(self):
if self.config["llm_params"]["llm_loader"] in ["gpt-3.5-turbo-1106", "gpt-4"]:
llm = ChatOpenAI(model_name=self.config["llm_params"]["llm_loader"])
elif self.config["llm_params"]["llm_loader"] == "local_llm":
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
llm = LlamaCpp(
model_path=LLAMA_PATH,
n_batch=n_batch,
n_ctx=2048,
f16_kv=True,
verbose=True,
n_threads=2,
temperature=self.config["llm_params"]["local_llm_params"][
"temperature"
],
)
else:
raise ValueError(
f"Invalid LLM Loader: {self.config['llm_params']['llm_loader']}"
)
return llm
|