File size: 18,396 Bytes
f51bb92 3ff5066 f51bb92 3ff5066 638bffe 3ff5066 638bffe 3ff5066 f51bb92 3ff5066 638bffe 3ff5066 9a544d2 3ff5066 638bffe 3ff5066 638bffe 3ff5066 638bffe 3ff5066 f51bb92 3ff5066 f51bb92 3ff5066 f51bb92 3ff5066 f51bb92 49140fa f51bb92 638bffe f51bb92 3ff5066 f51bb92 638bffe f51bb92 638bffe f51bb92 638bffe f51bb92 3ff5066 f51bb92 9a7da99 f51bb92 3ff5066 f51bb92 638bffe f51bb92 9a7da99 638bffe 9a7da99 638bffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import os
import re
import requests
import pysrt
from langchain_community.document_loaders import (
PyMuPDFLoader,
Docx2txtLoader,
YoutubeLoader,
WebBaseLoader,
TextLoader,
)
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from llama_parse import LlamaParse
from langchain.schema import Document
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from ragatouille import RAGPretrainedModel
from langchain.chains import LLMChain
from langchain_community.llms import OpenAI
from langchain import PromptTemplate
import json
from concurrent.futures import ThreadPoolExecutor
from urllib.parse import urljoin
import html2text
import bs4
import tempfile
import PyPDF2
try:
from modules.dataloader.helpers import get_metadata, download_pdf_from_url
from modules.config.constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY
except:
from dataloader.helpers import get_metadata, download_pdf_from_url
from config.constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY
logger = logging.getLogger(__name__)
BASE_DIR = os.getcwd()
class PDFReader:
def __init__(self):
pass
def get_loader(self, pdf_path):
loader = PyMuPDFLoader(pdf_path)
return loader
def get_documents(self, loader):
return loader.load()
class LlamaParser:
def __init__(self):
print("Initializing LlamaParser")
self.GPT_API_KEY = OPENAI_API_KEY
self.LLAMA_CLOUD_API_KEY = LLAMA_CLOUD_API_KEY
self.parse_url = "https://api.cloud.llamaindex.ai/api/parsing/upload"
self.headers = {
'Accept': 'application/json',
'Authorization': f'Bearer {LLAMA_CLOUD_API_KEY}'
}
self.parser = LlamaParse(
api_key=LLAMA_CLOUD_API_KEY,
result_type="markdown",
verbose=True,
language="en",
gpt4o_mode=False,
# gpt4o_api_key=OPENAI_API_KEY,
parsing_instruction="The provided documents are PDFs of lecture slides of deep learning material. They contain LaTeX equations, images, and text. The goal is to extract the text, images and equations from the slides. The markdown should be clean and easy to read, and any math equation should be converted to LaTeX format, between $ signs. For images, if you can, give a description and a source."
)
def parse(self, pdf_path):
pdf_name = os.path.basename(pdf_path)
if not os.path.exists(pdf_path):
logger.warning(f"File {pdf_name} does not exist locally, installing temporarily...")
pdf_path = download_pdf_from_url(pdf_path)
documents = self.parser.load_data(pdf_path)
document = [document.to_langchain_format() for document in documents][0]
content = document.page_content
pages = content.split("\n---\n")
pages = [page.strip() for page in pages]
documents = [
Document(
page_content=page,
metadata={"source": pdf_path, "page": i}
) for i, page in enumerate(pages)
]
return documents
def make_request(self, pdf_url):
payload = {
"gpt4o_mode": "false",
"parsing_instruction": "The provided document is a PDF of lecture slides of deep learning material. They contain LaTeX equations, images, and text. The goal is to extract the text, images and equations from the slides and convert them to markdown format. The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$. For images, give a description and if you can, a source.",
}
files = [
('file', ('file', requests.get(pdf_url).content, 'application/octet-stream'))
]
response = requests.request(
"POST", self.parse_url, headers=self.headers, data=payload, files=files)
return response.json()['id'], response.json()['status']
async def get_result(self, job_id):
url = f"https://api.cloud.llamaindex.ai/api/parsing/job/{job_id}/result/markdown"
response = requests.request("GET", url, headers=self.headers, data={})
return response.json()['markdown']
async def _parse(self, pdf_path):
job_id, status = self.make_request(pdf_path)
while status != "SUCCESS":
url = f"https://api.cloud.llamaindex.ai/api/parsing/job/{job_id}"
response = requests.request("GET", url, headers=self.headers, data={})
status = response.json()["status"]
result = await self.get_result(job_id)
documents = [
Document(
page_content=result,
metadata={"source": pdf_path}
)
]
return documents
async def _parse(self, pdf_path):
return await self._parse(pdf_path)
class HTMLReader:
def __init__(self):
pass
def read_url(self, url):
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
logger.warning(f"Failed to download HTML from URL: {url}")
return None
def check_links(self, base_url, html_content):
soup = bs4.BeautifulSoup(html_content, "html.parser")
for link in soup.find_all("a"):
href = link.get("href")
if not href or href.startswith("#"):
continue
elif not href.startswith("https"):
href = href.replace("http", "https")
absolute_url = urljoin(base_url, href)
link['href'] = absolute_url
resp = requests.head(absolute_url)
if resp.status_code != 200:
logger.warning(f"Link {absolute_url} is broken")
logger.warning(f"Status code: {resp.status_code}")
return str(soup)
def html_to_md(self, url, html_content):
html_processed = self.check_links(url, html_content)
markdown_content = html2text.html2text(html_processed)
return markdown_content
def read_html(self, url):
html_content = self.read_url(url)
if html_content:
return self.html_to_md(url, html_content)
else:
return None
class FileReader:
def __init__(self, logger, kind):
self.logger = logger
self.kind = kind
if kind == "llama":
self.pdf_reader = LlamaParser()
else:
self.pdf_reader = PDFReader()
self.web_reader = HTMLReader()
def extract_text_from_pdf(self, pdf_path):
text = ""
with open(pdf_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
text += page.extract_text()
return text
def read_pdf(self, temp_file_path: str):
if self.kind == "llama":
documents = self.pdf_reader.parse(temp_file_path) # asyncio.run(self.pdf_reader.parse(temp_file_path)) if using async
else:
loader = self.pdf_reader.get_loader(temp_file_path)
documents = self.pdf_reader.get_documents(loader)
return documents
def read_txt(self, temp_file_path: str):
loader = TextLoader(temp_file_path, autodetect_encoding=True)
return loader.load()
def read_docx(self, temp_file_path: str):
loader = Docx2txtLoader(temp_file_path)
return loader.load()
def read_srt(self, temp_file_path: str):
subs = pysrt.open(temp_file_path)
text = ""
for sub in subs:
text += sub.text
return [Document(page_content=text)]
def read_youtube_transcript(self, url: str):
loader = YoutubeLoader.from_youtube_url(
url, add_video_info=True, language=["en"], translation="en"
)
return loader.load()
def read_html(self, url: str):
loader = WebBaseLoader(url)
return loader.load()
def read_tex_from_url(self, tex_url):
response = requests.get(tex_url)
if response.status_code == 200:
return [Document(page_content=response.text)]
else:
self.logger.error(f"Failed to fetch .tex file from URL: {tex_url}")
return None
class ChunkProcessor:
def __init__(self, config, logger):
self.config = config
self.logger = logger
self.document_data = {}
self.document_metadata = {}
self.document_chunks_full = []
if config["splitter_options"]["use_splitter"]:
if config["splitter_options"]["split_by_token"]:
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = RecursiveCharacterTextSplitter(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = None
self.logger.info("ChunkProcessor instance created")
def remove_delimiters(self, document_chunks: list):
for chunk in document_chunks:
for delimiter in self.config["splitter_options"]["delimiters_to_remove"]:
chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
return document_chunks
def remove_chunks(self, document_chunks: list):
front = self.config["splitter_options"]["front_chunk_to_remove"]
end = self.config["splitter_options"]["last_chunks_to_remove"]
for _ in range(front):
del document_chunks[0]
for _ in range(end):
document_chunks.pop()
return document_chunks
def process_chunks(
self, documents, file_type="txt", source="", page=0, metadata={}
):
documents = [Document(page_content=documents, source=source, page=page)]
if (
file_type == "txt"
or file_type == "docx"
or file_type == "srt"
or file_type == "tex"
):
document_chunks = self.splitter.split_documents(documents)
elif file_type == "pdf":
document_chunks = documents # Full page for now
# add the source and page number back to the metadata
for chunk in document_chunks:
chunk.metadata["source"] = source
chunk.metadata["page"] = page
# add the metadata extracted from the document
for key, value in metadata.items():
chunk.metadata[key] = value
if self.config["splitter_options"]["remove_leftover_delimiters"]:
document_chunks = self.remove_delimiters(document_chunks)
if self.config["splitter_options"]["remove_chunks"]:
document_chunks = self.remove_chunks(document_chunks)
return document_chunks
def chunk_docs(self, file_reader, uploaded_files, weblinks):
addl_metadata = get_metadata(
"https://dl4ds.github.io/sp2024/lectures/",
"https://dl4ds.github.io/sp2024/schedule/",
) # For any additional metadata
with ThreadPoolExecutor() as executor:
executor.map(
self.process_file,
uploaded_files,
range(len(uploaded_files)),
[file_reader] * len(uploaded_files),
[addl_metadata] * len(uploaded_files),
)
executor.map(
self.process_weblink,
weblinks,
range(len(weblinks)),
[file_reader] * len(weblinks),
[addl_metadata] * len(weblinks),
)
document_names = [
f"{file_name}_{page_num}"
for file_name, pages in self.document_data.items()
for page_num in pages.keys()
]
documents = [
page for doc in self.document_data.values() for page in doc.values()
]
document_metadata = [
page for doc in self.document_metadata.values() for page in doc.values()
]
self.save_document_data()
self.logger.info(
f"Total document chunks extracted: {len(self.document_chunks_full)}"
)
return self.document_chunks_full, document_names, documents, document_metadata
def process_documents(
self, documents, file_path, file_type, metadata_source, addl_metadata
):
file_data = {}
file_metadata = {}
for doc in documents:
# if len(doc.page_content) <= 400: # better approach to filter out non-informative documents
# continue
page_num = doc.metadata.get("page", 0)
file_data[page_num] = doc.page_content
metadata = (
addl_metadata.get(file_path, {})
if metadata_source == "file"
else {"source": file_path, "page": page_num}
)
file_metadata[page_num] = metadata
if self.config["vectorstore"]["db_option"] not in ["RAGatouille"]:
document_chunks = self.process_chunks(
doc.page_content,
file_type,
source=file_path,
page=page_num,
metadata=metadata,
)
self.document_chunks_full.extend(document_chunks)
print(f"Processed {file_path}. File_data: {file_data}")
self.document_data[file_path] = file_data
self.document_metadata[file_path] = file_metadata
def process_file(self, file_path, file_index, file_reader, addl_metadata):
file_name = os.path.basename(file_path)
if file_name in self.document_data:
return
file_type = file_name.split(".")[-1]
read_methods = {
"pdf": file_reader.read_pdf,
"txt": file_reader.read_txt,
"docx": file_reader.read_docx,
"srt": file_reader.read_srt,
"tex": file_reader.read_tex_from_url,
}
if file_type not in read_methods:
self.logger.warning(f"Unsupported file type: {file_type}")
return
try:
documents = read_methods[file_type](file_path)
self.process_documents(
documents, file_path, file_type, "file", addl_metadata
)
except Exception as e:
self.logger.error(f"Error processing file {file_name}: {str(e)}")
def process_weblink(self, link, link_index, file_reader, addl_metadata):
if link in self.document_data:
return
self.logger.info(f"Reading link {link_index + 1} : {link}")
try:
if "youtube" in link:
documents = file_reader.read_youtube_transcript(link)
else:
documents = file_reader.read_html(link)
self.process_documents(documents, link, "txt", "link", addl_metadata)
except Exception as e:
self.logger.error(f"Error Reading link {link_index + 1} : {link}: {str(e)}")
def save_document_data(self):
if not os.path.exists(f"{self.config['log_chunk_dir']}/docs"):
os.makedirs(f"{self.config['log_chunk_dir']}/docs")
self.logger.info(
f"Creating directory {self.config['log_chunk_dir']}/docs for document data"
)
self.logger.info(
f"Saving document content to {self.config['log_chunk_dir']}/docs/doc_content.json"
)
if not os.path.exists(f"{self.config['log_chunk_dir']}/metadata"):
os.makedirs(f"{self.config['log_chunk_dir']}/metadata")
self.logger.info(
f"Creating directory {self.config['log_chunk_dir']}/metadata for document metadata"
)
self.logger.info(
f"Saving document metadata to {self.config['log_chunk_dir']}/metadata/doc_metadata.json"
)
with open(
f"{self.config['log_chunk_dir']}/docs/doc_content.json", "w"
) as json_file:
json.dump(self.document_data, json_file, indent=4)
with open(
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "w"
) as json_file:
json.dump(self.document_metadata, json_file, indent=4)
def load_document_data(self):
with open(
f"{self.config['log_chunk_dir']}/docs/doc_content.json", "r"
) as json_file:
self.document_data = json.load(json_file)
with open(
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "r"
) as json_file:
self.document_metadata = json.load(json_file)
class DataLoader:
def __init__(self, config, logger=None):
self.file_reader = FileReader(logger=logger, kind=config["llm_params"]["pdf_reader"])
self.chunk_processor = ChunkProcessor(config, logger=logger)
def get_chunks(self, uploaded_files, weblinks):
return self.chunk_processor.chunk_docs(
self.file_reader, uploaded_files, weblinks
)
if __name__ == "__main__":
import yaml
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
with open("../code/modules/config/config.yml", "r") as f:
config = yaml.safe_load(f)
STORAGE_DIR = os.path.join(BASE_DIR, config['vectorstore']["data_path"])
uploaded_files = [
os.path.join(STORAGE_DIR, file) for file in os.listdir(STORAGE_DIR) if file != "urls.txt"
]
data_loader = DataLoader(config, logger=logger)
document_chunks, document_names, documents, document_metadata = (
data_loader.get_chunks(
["https://dl4ds.github.io/sp2024/static_files/lectures/05_loss_functions_v2.pdf"],
[],
)
)
print(document_names[:5])
print(len(document_chunks))
|