File size: 5,975 Bytes
f51bb92 f2daaee f51bb92 6158da4 f51bb92 f2daaee f51bb92 9a7da99 6158da4 9a7da99 6158da4 b83cc65 7f989d6 b83cc65 6d056d5 b83cc65 6158da4 f51bb92 b83cc65 f51bb92 b83cc65 6158da4 7f989d6 6158da4 f2daaee 7f989d6 6158da4 f2daaee 6158da4 f51bb92 b83cc65 6158da4 f2daaee f51bb92 f2daaee 6158da4 6d056d5 f2daaee 6158da4 b83cc65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain_core.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import chainlit as cl
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
import yaml
import logging
from dotenv import load_dotenv
from modules.chat.llm_tutor import LLMTutor
from modules.config.constants import *
from modules.chat.helpers import get_sources
from modules.chat_processor.chat_processor import ChatProcessor
global logger
# Initialize logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
@cl.set_starters
async def set_starters():
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transfromers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didnt understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
# Adding option to select the chat profile
@cl.set_chat_profiles
async def chat_profile():
return [
# cl.ChatProfile(
# name="Mistral",
# markdown_description="Use the local LLM: **Mistral**.",
# ),
cl.ChatProfile(
name="gpt-3.5-turbo-1106",
markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.",
),
cl.ChatProfile(
name="gpt-4",
markdown_description="Use OpenAI API for **gpt-4**.",
),
cl.ChatProfile(
name="Llama",
markdown_description="Use the local LLM: **Tiny Llama**.",
),
]
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"Chatbot": "AI Tutor"}
return rename_dict.get(orig_author, orig_author)
# chainlit code
@cl.on_chat_start
async def start():
with open("modules/config/config.yml", "r") as f:
config = yaml.safe_load(f)
# Ensure log directory exists
log_directory = config["log_dir"]
if not os.path.exists(log_directory):
os.makedirs(log_directory)
# File Handler
log_file_path = (
f"{log_directory}/tutor.log" # Change this to your desired log file path
)
file_handler = logging.FileHandler(log_file_path, mode="w")
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info("Config file loaded")
logger.info(f"Config: {config}")
logger.info("Creating llm_tutor instance")
chat_profile = cl.user_session.get("chat_profile")
if chat_profile is not None:
if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]:
config["llm_params"]["llm_loader"] = "openai"
config["llm_params"]["openai_params"]["model"] = chat_profile.lower()
elif chat_profile.lower() == "llama":
config["llm_params"]["llm_loader"] = "local_llm"
config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH
config["llm_params"]["local_llm_params"]["model_type"] = "llama"
elif chat_profile.lower() == "mistral":
config["llm_params"]["llm_loader"] = "local_llm"
config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH
config["llm_params"]["local_llm_params"]["model_type"] = "mistral"
else:
pass
llm_tutor = LLMTutor(config, logger=logger)
chain = llm_tutor.qa_bot()
# msg = cl.Message(content=f"Starting the bot {chat_profile}...")
# await msg.send()
# msg.content = opening_message
# await msg.update()
tags = [chat_profile, config["vectorstore"]["db_option"]]
chat_processor = ChatProcessor(config, tags=tags)
cl.user_session.set("chain", chain)
cl.user_session.set("counter", 0)
cl.user_session.set("chat_processor", chat_processor)
@cl.on_chat_end
async def on_chat_end():
await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
@cl.on_message
async def main(message):
global logger
user = cl.user_session.get("user")
chain = cl.user_session.get("chain")
counter = cl.user_session.get("counter")
counter += 1
cl.user_session.set("counter", counter)
# if counter >= 3: # Ensure the counter condition is checked
# await cl.Message(content="Your credits are up!").send()
# await on_chat_end() # Call the on_chat_end function to handle the end of the chat
# return # Exit the function to stop further processing
# else:
cb = cl.AsyncLangchainCallbackHandler() # TODO: fix streaming here
cb.answer_reached = True
processor = cl.user_session.get("chat_processor")
res = await processor.rag(message.content, chain, cb)
try:
answer = res["answer"]
except:
answer = res["result"]
answer_with_sources, source_elements, sources_dict = get_sources(res, answer)
processor._process(message.content, answer, sources_dict)
await cl.Message(content=answer_with_sources, elements=source_elements).send()
|