File size: 14,573 Bytes
e27870a 2ce64aa e27870a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import bs4
from urllib.parse import urljoin
import requests
import pysrt
from langchain_community.document_loaders import (
PyMuPDFLoader,
Docx2txtLoader,
YoutubeLoader,
WebBaseLoader,
TextLoader,
)
import html2text
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from llama_parse import LlamaParse
from langchain.schema import Document
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
from ragatouille import RAGPretrainedModel
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain import PromptTemplate
try:
from modules.helpers import get_lecture_metadata
from modules.constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY
except:
from helpers import get_lecture_metadata
from constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY
logger = logging.getLogger(__name__)
class PDFReader:
def __init__(self):
pass
def get_loader(self, pdf_path):
loader = PyMuPDFLoader(pdf_path)
return loader
def get_documents(self, loader):
return loader.load()
class LlamaParser:
def __init__(self):
self.parser = LlamaParse(
api_key=LLAMA_CLOUD_API_KEY,
result_type="markdown",
verbose=True,
language="en",
gpt4o_mode=True,
gpt4o_api_key=OPENAI_API_KEY,
parsing_instruction="The provided documents are PDFs of lecture slides of deep learning material. They contain LaTeX equations, images, and text. The goal is to extract the text, images and equations from the slides and convert them to markdown format. The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$. For images, give a description and if you can, a source."
)
def parse(self, pdf_path):
documents = self.parser.load_data(pdf_path)
documents = [document.to_langchain_format() for document in documents]
return documents
class HTMLReader:
def __init__(self):
pass
def read_url(self, url):
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
logger.warning(f"Failed to download HTML from URL: {url}")
return None
def check_links(self, base_url, html_content):
soup = bs4.BeautifulSoup(html_content, "html.parser")
for link in soup.find_all("a"):
href = link.get("href")
if not href or href.startswith("#"):
continue
elif not href.startswith("https"):
href = href.replace("http", "https")
absolute_url = urljoin(base_url, href)
link['href'] = absolute_url
resp = requests.head(absolute_url)
if resp.status_code != 200:
logger.warning(f"Link {absolute_url} is broken")
logger.warning(f"Status code: {resp.status_code}")
return str(soup)
def html_to_md(self, url, html_content):
html_processed = self.check_links(url, html_content)
markdown_content = html2text.html2text(html_processed)
return markdown_content
def read_html(self, url):
html_content = self.read_url(url)
if html_content:
return self.html_to_md(url, html_content)
else:
return None
class FileReader:
def __init__(self, kind):
self.kind = kind
if kind == "llama":
self.pdf_reader = LlamaParser()
else:
self.pdf_reader = PDFReader()
self.web_reader = HTMLReader()
def extract_text_from_pdf(self, pdf_path):
text = ""
with open(pdf_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
text += page.extract_text()
return text
def download_pdf_from_url(self, pdf_url):
response = requests.get(pdf_url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(response.content)
temp_file_path = temp_file.name
return temp_file_path
else:
print("Failed to download PDF from URL:", pdf_url)
return None
def read_pdf(self, temp_file_path: str):
if self.kind == "llama":
documents = self.pdf_reader.parse(temp_file_path)
else:
loader = self.pdf_reader.get_loader(temp_file_path)
documents = self.pdf_reader.get_documents(loader)
return documents
def read_txt(self, temp_file_path: str):
loader = TextLoader(temp_file_path, autodetect_encoding=True)
return loader.load()
def read_docx(self, temp_file_path: str):
loader = Docx2txtLoader(temp_file_path)
return loader.load()
def read_srt(self, temp_file_path: str):
subs = pysrt.open(temp_file_path)
text = ""
for sub in subs:
text += sub.text
return [Document(page_content=text)]
def read_youtube_transcript(self, url: str):
loader = YoutubeLoader.from_youtube_url(
url, add_video_info=True, language=["en"], translation="en"
)
return loader.load()
def read_html(self, url: str):
return [Document(page_content=self.web_reader.read_html(url))]
class ChunkProcessor:
def __init__(self, config):
self.config = config
if config["splitter_options"]["use_splitter"]:
if config["splitter_options"]["split_by_token"]:
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = RecursiveCharacterTextSplitter(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = None
logger.info("ChunkProcessor instance created")
def remove_delimiters(self, document_chunks: list):
for chunk in document_chunks:
for delimiter in self.config["splitter_options"]["delimiters_to_remove"]:
chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
return document_chunks
def remove_chunks(self, document_chunks: list):
front = self.config["splitter_options"]["front_chunk_to_remove"]
end = self.config["splitter_options"]["last_chunks_to_remove"]
for _ in range(front):
del document_chunks[0]
for _ in range(end):
document_chunks.pop()
logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}")
return document_chunks
def process_chunks(
self, documents, file_type="txt", source="", page=0, metadata={}
):
documents = [Document(page_content=documents, source=source, page=page)]
if file_type == "txt":
document_chunks = self.splitter.split_documents(documents)
elif file_type == "pdf":
document_chunks = documents # Full page for now
# add the source and page number back to the metadata
for chunk in document_chunks:
chunk.metadata["source"] = source
chunk.metadata["page"] = page
# add the metadata extracted from the document
for key, value in metadata.items():
chunk.metadata[key] = value
if self.config["splitter_options"]["remove_leftover_delimiters"]:
document_chunks = self.remove_delimiters(document_chunks)
if self.config["splitter_options"]["remove_chunks"]:
document_chunks = self.remove_chunks(document_chunks)
return document_chunks
def get_chunks(self, file_reader, uploaded_files, weblinks):
self.document_chunks_full = []
self.parent_document_names = []
self.child_document_names = []
self.documents = []
self.document_metadata = []
lecture_metadata = get_lecture_metadata(
"https://dl4ds.github.io/sp2024/lectures/",
"https://dl4ds.github.io/sp2024/schedule/",
) # TODO: Use more efficiently
for file_index, file_path in enumerate(uploaded_files):
file_name = os.path.basename(file_path)
file_type = file_name.split(".")[-1].lower()
# try:
if file_type == "pdf":
documents = file_reader.read_pdf(file_path)
elif file_type == "txt":
documents = file_reader.read_txt(file_path)
elif file_type == "docx":
documents = file_reader.read_docx(file_path)
elif file_type == "srt":
documents = file_reader.read_srt(file_path)
else:
logger.warning(f"Unsupported file type: {file_type}")
continue
# full_text = ""
# for doc in documents:
# full_text += doc.page_content
# break # getting only first page for now
# extracted_metadata = self.extract_metadata(full_text)
for doc in documents:
page_num = doc.metadata.get("page", 0)
self.documents.append(doc.page_content)
self.document_metadata.append({"source": file_path, "page": page_num})
if "lecture" in file_path.lower():
metadata = lecture_metadata.get(file_path, {})
metadata["source_type"] = "lecture"
self.document_metadata[-1].update(metadata)
else:
metadata = {"source_type": "other"}
self.child_document_names.append(f"{file_name}_{page_num}")
self.parent_document_names.append(file_name)
if self.config["embedding_options"]["db_option"] not in ["RAGatouille"]:
document_chunks = self.process_chunks(
self.documents[-1],
file_type,
source=file_path,
page=page_num,
metadata=metadata,
)
self.document_chunks_full.extend(document_chunks)
# except Exception as e:
# logger.error(f"Error processing file {file_name}: {str(e)}")
self.process_weblinks(file_reader, weblinks)
logger.info(
f"Total document chunks extracted: {len(self.document_chunks_full)}"
)
return (
self.document_chunks_full,
self.child_document_names,
self.documents,
self.document_metadata,
)
def process_weblinks(self, file_reader, weblinks):
if weblinks[0] != "":
logger.info(f"Splitting weblinks: total of {len(weblinks)}")
for link_index, link in enumerate(weblinks):
try:
logger.info(f"\tSplitting link {link_index + 1} : {link}")
if "youtube" in link:
documents = file_reader.read_youtube_transcript(link)
else:
documents = file_reader.read_html(link)
print(f"Link: {link}")
print(documents)
for doc in documents:
page_num = doc.metadata.get("page", 0)
self.documents.append(doc.page_content)
self.document_metadata.append(
{"source": link, "page": page_num}
)
self.child_document_names.append(f"{link}")
self.parent_document_names.append(link)
if self.config["embedding_options"]["db_option"] not in [
"RAGatouille"
]:
document_chunks = self.process_chunks(
self.documents[-1],
"txt",
source=link,
page=0,
metadata={"source_type": "webpage"},
)
self.document_chunks_full.extend(document_chunks)
except Exception as e:
logger.error(
f"Error splitting link {link_index + 1} : {link}: {str(e)}"
)
class DataLoader:
def __init__(self, config):
if config["llm_params"]["pdf_reader"] == "llama":
if LLAMA_CLOUD_API_KEY == None or OPENAI_API_KEY == None:
raise ValueError(
"Please set the LLAMA_CLOUD_API_KEY and GPT4o_API_KEY environment variables"
)
self.file_reader = FileReader(kind=config["llm_params"]["pdf_reader"])
self.chunk_processor = ChunkProcessor(config)
def get_chunks(self, uploaded_files, weblinks):
return self.chunk_processor.get_chunks(
self.file_reader, uploaded_files, weblinks
)
if __name__ == "__main__":
# read config.yml file
import yaml
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(BASE_DIR, "../", "config.yml"), "r") as f:
config = yaml.safe_load(f)
# create DataLoader instance
chunk_processor = ChunkProcessor(config)
file_reader = FileReader(kind=config["llm_params"]["pdf_reader"])
weblinks = ["https://dl4ds.github.io/sp2024/"]
uploaded_files = []
# get document chunks
document_chunks, child_document_names, documents, document_metadata = chunk_processor.get_chunks(
file_reader, uploaded_files, weblinks
)
print(document_chunks) |