File size: 14,317 Bytes
eb62139
 
 
 
 
 
 
 
 
 
 
 
60929fd
eb62139
 
 
 
 
 
 
 
60929fd
eb62139
ae33464
eb62139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60929fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb62139
 
 
 
 
 
 
 
 
 
 
 
 
 
60929fd
eb62139
 
 
 
 
 
 
 
 
 
60929fd
 
 
 
eb62139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import chainlit.data as cl_data
import asyncio
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat.helpers import (
    get_sources,
    get_history_setup_llm,
)
import copy
import time
from langchain_community.callbacks import get_openai_callback
from config.config_manager import config_manager

USER_TIMEOUT = 60_000
SYSTEM = "System"
LLM = "AI Tutor"
AGENT = "Agent"
YOU = "User"
ERROR = "Error"

config = config_manager.get_config().dict()


class Chatbot:
    def __init__(self, config):
        """
        Initialize the Chatbot class.
        """
        self.config = config

    @no_type_check
    async def setup_llm(self):
        """
        Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.

        #TODO: Clean this up.
        """
        start_time = time.time()

        llm_settings = cl.user_session.get("llm_settings", {})
        (
            chat_profile,
            retriever_method,
            memory_window,
            llm_style,
            generate_follow_up,
            chunking_mode,
        ) = (
            llm_settings.get("chat_model"),
            llm_settings.get("retriever_method"),
            llm_settings.get("memory_window"),
            llm_settings.get("llm_style"),
            llm_settings.get("follow_up_questions"),
            llm_settings.get("chunking_mode"),
        )

        chain = cl.user_session.get("chain")
        memory_list = cl.user_session.get(
            "memory",
            (
                list(chain.store.values())[0].messages
                if len(chain.store.values()) > 0
                else []
            ),
        )
        conversation_list = get_history_setup_llm(memory_list)

        old_config = copy.deepcopy(self.config)
        self.config["vectorstore"]["db_option"] = retriever_method
        self.config["llm_params"]["memory_window"] = memory_window
        self.config["llm_params"]["llm_style"] = llm_style
        self.config["llm_params"]["llm_loader"] = chat_profile
        self.config["llm_params"]["generate_follow_up"] = generate_follow_up
        self.config["splitter_options"]["chunking_mode"] = chunking_mode

        self.llm_tutor.update_llm(
            old_config, self.config
        )  # update only llm attributes that are changed
        self.chain = self.llm_tutor.qa_bot(
            memory=conversation_list,
        )

        cl.user_session.set("chain", self.chain)
        cl.user_session.set("llm_tutor", self.llm_tutor)

        print("Time taken to setup LLM: ", time.time() - start_time)

    @no_type_check
    async def update_llm(self, new_settings: Dict[str, Any]):
        """
        Update the LLM settings and reinitialize the LLM with the new settings.

        Args:
            new_settings (Dict[str, Any]): The new settings to update.
        """
        cl.user_session.set("llm_settings", new_settings)
        await self.inform_llm_settings()
        await self.setup_llm()

    async def make_llm_settings_widgets(self, config=None):
        """
        Create and send the widgets for LLM settings configuration.

        Args:
            config: The configuration to use for setting up the widgets.
        """
        config = config or self.config
        await cl.ChatSettings(
            [
                cl.input_widget.Select(
                    id="chat_model",
                    label="Model Name (Default GPT-3)",
                    values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
                    initial_index=[
                        "local_llm",
                        "gpt-3.5-turbo-1106",
                        "gpt-4",
                        "gpt-4o-mini",
                    ].index(config["llm_params"]["llm_loader"]),
                ),
                cl.input_widget.Select(
                    id="retriever_method",
                    label="Retriever (Default FAISS)",
                    values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
                    initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
                        config["vectorstore"]["db_option"]
                    ),
                ),
                cl.input_widget.Slider(
                    id="memory_window",
                    label="Memory Window (Default 3)",
                    initial=3,
                    min=0,
                    max=10,
                    step=1,
                ),
                cl.input_widget.Switch(
                    id="view_sources", label="View Sources", initial=False
                ),
                cl.input_widget.Switch(
                    id="stream_response",
                    label="Stream response",
                    initial=config["llm_params"]["stream"],
                ),
                cl.input_widget.Select(
                    id="chunking_mode",
                    label="Chunking mode",
                    values=["fixed", "semantic"],
                    initial_index=1,
                ),
                cl.input_widget.Switch(
                    id="follow_up_questions",
                    label="Generate follow up questions",
                    initial=False,
                ),
                cl.input_widget.Select(
                    id="llm_style",
                    label="Type of Conversation (Default Normal)",
                    values=["Normal", "ELI5"],
                    initial_index=0,
                ),
            ]
        ).send()

    @no_type_check
    async def inform_llm_settings(self):
        """
        Inform the user about the updated LLM settings and display them as a message.
        """
        llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
        llm_tutor = cl.user_session.get("llm_tutor")
        settings_dict = {
            "model": llm_settings.get("chat_model"),
            "retriever": llm_settings.get("retriever_method"),
            "memory_window": llm_settings.get("memory_window"),
            "num_docs_in_db": (
                len(llm_tutor.vector_db)
                if llm_tutor and hasattr(llm_tutor, "vector_db")
                else 0
            ),
            "view_sources": llm_settings.get("view_sources"),
            "follow_up_questions": llm_settings.get("follow_up_questions"),
        }
        print("Settings Dict: ", settings_dict)
        await cl.Message(
            author=SYSTEM,
            content="LLM settings have been updated. You can continue with your Query!",
            # elements=[
            #     cl.Text(
            #         name="settings",
            #         display="side",
            #         content=json.dumps(settings_dict, indent=4),
            #         language="json",
            #     ),
            # ],
        ).send()

    async def set_starters(self):
        """
        Set starter messages for the chatbot.
        """

        return [
            cl.Starter(
                label="recording on CNNs?",
                message="Where can I find the recording for the lecture on Transformers?",
                icon="/public/adv-screen-recorder-svgrepo-com.svg",
            ),
            cl.Starter(
                label="where's the slides?",
                message="When are the lectures? I can't find the schedule.",
                icon="/public/alarmy-svgrepo-com.svg",
            ),
            cl.Starter(
                label="Due Date?",
                message="When is the final project due?",
                icon="/public/calendar-samsung-17-svgrepo-com.svg",
            ),
            cl.Starter(
                label="Explain backprop.",
                message="I didn't understand the math behind backprop, could you explain it?",
                icon="/public/acastusphoton-svgrepo-com.svg",
            ),
        ]

    def rename(self, orig_author: str):
        """
        Rename the original author to a more user-friendly name.

        Args:
            orig_author (str): The original author's name.

        Returns:
            str: The renamed author.
        """
        rename_dict = {"Chatbot": LLM}
        return rename_dict.get(orig_author, orig_author)

    async def start(self):
        """
        Start the chatbot, initialize settings widgets,
        and display and load previous conversation if chat logging is enabled.
        """

        start_time = time.time()

        await self.make_llm_settings_widgets(self.config)  # Reload the settings widgets

        # TODO: remove self.user with cl.user_session.get("user")
        self.user = {
            "user_id": "guest",
            "session_id": cl.context.session.thread_id,
        }

        memory = cl.user_session.get("memory", [])
        self.llm_tutor = LLMTutor(self.config, user=self.user)

        self.chain = self.llm_tutor.qa_bot(
            memory=memory,
        )
        self.question_generator = self.llm_tutor.question_generator
        cl.user_session.set("llm_tutor", self.llm_tutor)
        cl.user_session.set("chain", self.chain)

        print("Time taken to start LLM: ", time.time() - start_time)

    async def stream_response(self, response):
        """
        Stream the response from the LLM.

        Args:
            response: The response from the LLM.
        """
        msg = cl.Message(content="")
        await msg.send()

        output = {}
        for chunk in response:
            if "answer" in chunk:
                await msg.stream_token(chunk["answer"])

            for key in chunk:
                if key not in output:
                    output[key] = chunk[key]
                else:
                    output[key] += chunk[key]
        return output

    async def main(self, message):
        """
        Process and Display the Conversation.

        Args:
            message: The incoming chat message.
        """

        start_time = time.time()

        chain = cl.user_session.get("chain")
        token_count = 0  # initialize token count
        if not chain:
            await self.start()  # start the chatbot if the chain is not present
            chain = cl.user_session.get("chain")

        # update user info with last message time
        llm_settings = cl.user_session.get("llm_settings", {})
        view_sources = llm_settings.get("view_sources", False)
        stream = llm_settings.get("stream_response", False)
        stream = False  # Fix streaming
        user_query_dict = {"input": message.content}
        # Define the base configuration
        cb = cl.AsyncLangchainCallbackHandler()
        chain_config = {
            "configurable": {
                "user_id": self.user["user_id"],
                "conversation_id": self.user["session_id"],
                "memory_window": self.config["llm_params"]["memory_window"],
            },
            "callbacks": (
                [cb]
                if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
                else None
            ),
        }

        with get_openai_callback() as token_count_cb:
            if stream:
                res = chain.stream(user_query=user_query_dict, config=chain_config)
                res = await self.stream_response(res)
            else:
                res = await chain.invoke(
                    user_query=user_query_dict,
                    config=chain_config,
                )
        token_count += token_count_cb.total_tokens

        answer = res.get("answer", res.get("result"))

        answer_with_sources, source_elements, sources_dict = get_sources(
            res, answer, stream=stream, view_sources=view_sources
        )
        answer_with_sources = answer_with_sources.replace("$$", "$")

        print("Time taken to process the message: ", time.time() - start_time)

        actions = []

        if self.config["llm_params"]["generate_follow_up"]:
            start_time = time.time()
            cb_follow_up = cl.AsyncLangchainCallbackHandler()
            config = {
                "callbacks": (
                    [cb_follow_up]
                    if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
                    else None
                )
            }
            with get_openai_callback() as token_count_cb:
                list_of_questions = await self.question_generator.generate_questions(
                    query=user_query_dict["input"],
                    response=answer,
                    chat_history=res.get("chat_history"),
                    context=res.get("context"),
                    config=config,
                )

            token_count += token_count_cb.total_tokens

            for question in list_of_questions:
                actions.append(
                    cl.Action(
                        name="follow up question",
                        value="example_value",
                        description=question,
                        label=question,
                    )
                )

            print("Time taken to generate questions: ", time.time() - start_time)
            print("Total Tokens Used: ", token_count)

        await cl.Message(
            content=answer_with_sources,
            elements=source_elements,
            author=LLM,
            actions=actions,
        ).send()

    async def on_follow_up(self, action: cl.Action):
        user = cl.user_session.get("user")
        message = await cl.Message(
            content=action.description,
            type="user_message",
            author=user.identifier,
        ).send()
        async with cl.Step(
            name="on_follow_up", type="run", parent_id=message.id
        ) as step:
            await self.main(message)
            step.output = message.content


chatbot = Chatbot(config=config)


async def start_app():
    cl.set_starters(chatbot.set_starters)
    cl.author_rename(chatbot.rename)
    cl.on_chat_start(chatbot.start)
    cl.on_message(chatbot.main)
    cl.on_settings_update(chatbot.update_llm)
    cl.action_callback("follow up question")(chatbot.on_follow_up)


loop = asyncio.get_event_loop()
if loop.is_running():
    asyncio.ensure_future(start_app())
else:
    asyncio.run(start_app())