File size: 11,133 Bytes
57b7b8d
6158da4
57b7b8d
6158da4
f0018f2
6158da4
 
 
 
 
 
57b7b8d
 
6158da4
 
57b7b8d
 
 
f0018f2
 
 
 
 
 
 
 
 
6158da4
 
 
 
57b7b8d
 
 
6158da4
57b7b8d
 
 
6158da4
57b7b8d
 
 
 
 
 
 
6158da4
dbc26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
57b7b8d
 
 
 
 
6158da4
57b7b8d
 
 
6158da4
 
57b7b8d
 
 
6158da4
57b7b8d
 
 
 
 
 
 
 
6158da4
57b7b8d
 
 
 
 
 
 
 
 
 
f0018f2
 
 
 
 
 
 
 
 
 
 
57b7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0018f2
 
 
 
 
57b7b8d
f0018f2
 
 
 
 
 
 
 
 
 
 
6158da4
71b8a7a
57b7b8d
 
 
6158da4
57b7b8d
6158da4
57b7b8d
 
f0018f2
 
 
 
 
 
b2c9100
 
f0018f2
6158da4
 
57b7b8d
 
 
f0018f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
f0018f2
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
f0018f2
 
57b7b8d
 
6158da4
57b7b8d
 
 
f0018f2
 
 
 
 
 
6158da4
57b7b8d
6158da4
 
 
 
b83cc65
 
 
57b7b8d
b83cc65
57b7b8d
b83cc65
f0018f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
 
 
 
6158da4
 
57b7b8d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import re
import requests
import pysrt
from langchain_community.document_loaders import (
    PyMuPDFLoader,
    Docx2txtLoader,
    YoutubeLoader,
    WebBaseLoader,
    TextLoader,
)
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from llama_parse import LlamaParse
from langchain.schema import Document
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
from ragatouille import RAGPretrainedModel
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain import PromptTemplate

try:
    from modules.helpers import get_lecture_metadata
except:
    from helpers import get_lecture_metadata

logger = logging.getLogger(__name__)


class PDFReader:
    def __init__(self):
        pass

    def get_loader(self, pdf_path):
        loader = PyMuPDFLoader(pdf_path)
        return loader

    def get_documents(self, loader):
        return loader.load()


class FileReader:
    def __init__(self):
        self.pdf_reader = PDFReader()

    def extract_text_from_pdf(self, pdf_path):
        text = ""
        with open(pdf_path, "rb") as file:
            reader = PyPDF2.PdfReader(file)
            num_pages = len(reader.pages)
            for page_num in range(num_pages):
                page = reader.pages[page_num]
                text += page.extract_text()
        return text

    def download_pdf_from_url(self, pdf_url):
        response = requests.get(pdf_url)
        if response.status_code == 200:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
                temp_file.write(response.content)
                temp_file_path = temp_file.name
            return temp_file_path
        else:
            print("Failed to download PDF from URL:", pdf_url)
            return None

    def read_pdf(self, temp_file_path: str):
        loader = self.pdf_reader.get_loader(temp_file_path)
        documents = self.pdf_reader.get_documents(loader)
        return documents

    def read_txt(self, temp_file_path: str):
        loader = TextLoader(temp_file_path, autodetect_encoding=True)
        return loader.load()

    def read_docx(self, temp_file_path: str):
        loader = Docx2txtLoader(temp_file_path)
        return loader.load()

    def read_srt(self, temp_file_path: str):
        subs = pysrt.open(temp_file_path)
        text = ""
        for sub in subs:
            text += sub.text
        return [Document(page_content=text)]

    def read_youtube_transcript(self, url: str):
        loader = YoutubeLoader.from_youtube_url(
            url, add_video_info=True, language=["en"], translation="en"
        )
        return loader.load()

    def read_html(self, url: str):
        loader = WebBaseLoader(url)
        return loader.load()


class ChunkProcessor:
    def __init__(self, config):
        self.config = config

        if config["splitter_options"]["use_splitter"]:
            if config["splitter_options"]["split_by_token"]:
                self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
                    chunk_size=config["splitter_options"]["chunk_size"],
                    chunk_overlap=config["splitter_options"]["chunk_overlap"],
                    separators=config["splitter_options"]["chunk_separators"],
                    disallowed_special=(),
                )
            else:
                self.splitter = RecursiveCharacterTextSplitter(
                    chunk_size=config["splitter_options"]["chunk_size"],
                    chunk_overlap=config["splitter_options"]["chunk_overlap"],
                    separators=config["splitter_options"]["chunk_separators"],
                    disallowed_special=(),
                )
        else:
            self.splitter = None
        logger.info("ChunkProcessor instance created")

    # def extract_metadata(self, document_content):

    #     llm = OpenAI()
    #     prompt_template = PromptTemplate(
    #         input_variables=["document_content"],
    #         template="Extract metadata for this document:\n\n{document_content}\n\nMetadata:",
    #     )
    #     chain = LLMChain(llm=llm, prompt=prompt_template)
    #     metadata = chain.run(document_content=document_content)
    #     return metadata

    def remove_delimiters(self, document_chunks: list):
        for chunk in document_chunks:
            for delimiter in self.config["splitter_options"]["delimiters_to_remove"]:
                chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
        return document_chunks

    def remove_chunks(self, document_chunks: list):
        front = self.config["splitter_options"]["front_chunk_to_remove"]
        end = self.config["splitter_options"]["last_chunks_to_remove"]
        for _ in range(front):
            del document_chunks[0]
        for _ in range(end):
            document_chunks.pop()
        logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}")
        return document_chunks

    def process_chunks(
        self, documents, file_type="txt", source="", page=0, metadata={}
    ):
        documents = [Document(page_content=documents, source=source, page=page)]
        if file_type == "txt":
            document_chunks = self.splitter.split_documents(documents)
        elif file_type == "pdf":
            document_chunks = documents  # Full page for now

        # add the source and page number back to the metadata
        for chunk in document_chunks:
            chunk.metadata["source"] = source
            chunk.metadata["page"] = page

            # add the metadata extracted from the document
            for key, value in metadata.items():
                chunk.metadata[key] = value

        if self.config["splitter_options"]["remove_leftover_delimiters"]:
            document_chunks = self.remove_delimiters(document_chunks)
        if self.config["splitter_options"]["remove_chunks"]:
            document_chunks = self.remove_chunks(document_chunks)

        return document_chunks

    def get_chunks(self, file_reader, uploaded_files, weblinks):
        self.document_chunks_full = []
        self.parent_document_names = []
        self.child_document_names = []
        self.documents = []
        self.document_metadata = []

        lecture_metadata = get_lecture_metadata(
            "https://dl4ds.github.io/sp2024/lectures/",
            "https://dl4ds.github.io/sp2024/schedule/",
        )  # TODO: Use more efficiently

        for file_index, file_path in enumerate(uploaded_files):
            file_name = os.path.basename(file_path)
            file_type = file_name.split(".")[-1].lower()

            # try:
            if file_type == "pdf":
                documents = file_reader.read_pdf(file_path)
            elif file_type == "txt":
                documents = file_reader.read_txt(file_path)
            elif file_type == "docx":
                documents = file_reader.read_docx(file_path)
            elif file_type == "srt":
                documents = file_reader.read_srt(file_path)
            else:
                logger.warning(f"Unsupported file type: {file_type}")
                continue

            # full_text = ""
            # for doc in documents:
            #     full_text += doc.page_content
            #     break  # getting only first page for now

            # extracted_metadata = self.extract_metadata(full_text)

            for doc in documents:
                page_num = doc.metadata.get("page", 0)
                self.documents.append(doc.page_content)
                self.document_metadata.append({"source": file_path, "page": page_num})
                if "lecture" in file_path.lower():
                    metadata = lecture_metadata.get(file_path, {})
                    metadata["source_type"] = "lecture"
                    self.document_metadata[-1].update(metadata)
                else:
                    metadata = {"source_type": "other"}

                self.child_document_names.append(f"{file_name}_{page_num}")

                self.parent_document_names.append(file_name)
                if self.config["embedding_options"]["db_option"] not in ["RAGatouille"]:
                    document_chunks = self.process_chunks(
                        self.documents[-1],
                        file_type,
                        source=file_path,
                        page=page_num,
                        metadata=metadata,
                    )
                    self.document_chunks_full.extend(document_chunks)

            # except Exception as e:
            #     logger.error(f"Error processing file {file_name}: {str(e)}")

        self.process_weblinks(file_reader, weblinks)

        logger.info(
            f"Total document chunks extracted: {len(self.document_chunks_full)}"
        )
        return (
            self.document_chunks_full,
            self.child_document_names,
            self.documents,
            self.document_metadata,
        )

    def process_weblinks(self, file_reader, weblinks):
        if weblinks[0] != "":
            logger.info(f"Splitting weblinks: total of {len(weblinks)}")

            for link_index, link in enumerate(weblinks):
                try:
                    logger.info(f"\tSplitting link {link_index+1} : {link}")
                    if "youtube" in link:
                        documents = file_reader.read_youtube_transcript(link)
                    else:
                        documents = file_reader.read_html(link)

                    for doc in documents:
                        page_num = doc.metadata.get("page", 0)
                        self.documents.append(doc.page_content)
                        self.document_metadata.append(
                            {"source": link, "page": page_num}
                        )
                        self.child_document_names.append(f"{link}")

                    self.parent_document_names.append(link)
                    if self.config["embedding_options"]["db_option"] not in [
                        "RAGatouille"
                    ]:
                        document_chunks = self.process_chunks(
                            self.documents[-1],
                            "txt",
                            source=link,
                            page=0,
                            metadata={"source_type": "webpage"},
                        )
                        self.document_chunks_full.extend(document_chunks)
                except Exception as e:
                    logger.error(
                        f"Error splitting link {link_index+1} : {link}: {str(e)}"
                    )


class DataLoader:
    def __init__(self, config):
        self.file_reader = FileReader()
        self.chunk_processor = ChunkProcessor(config)

    def get_chunks(self, uploaded_files, weblinks):
        return self.chunk_processor.get_chunks(
            self.file_reader, uploaded_files, weblinks
        )