File size: 14,808 Bytes
9b7a7cf 8f6647c 6158da4 8f6647c e029e22 f51bb92 8f6647c e029e22 9b7a7cf 8f6647c 9b7a7cf 8f6647c e029e22 8f6647c 9b7a7cf 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c c658776 8f6647c e029e22 c658776 8f6647c e029e22 8f6647c e029e22 8f6647c 9b7a7cf 8f6647c 9b7a7cf 8f6647c 9d89b34 9b7a7cf 9d89b34 e029e22 aaaac46 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 9b7a7cf 8f6647c e029e22 8f6647c c658776 e029e22 8f6647c e029e22 9b7a7cf e029e22 9b7a7cf c658776 e029e22 8f6647c 9d89b34 e029e22 9d89b34 e029e22 9d89b34 e029e22 4de6b1a 9d89b34 9b7a7cf 4de6b1a 9d89b34 9b7a7cf 9d89b34 c658776 9d89b34 9b7a7cf 9d89b34 e165ea5 9d89b34 9b7a7cf 9d89b34 9b7a7cf e165ea5 4de6b1a 9d89b34 4de6b1a 9b7a7cf 8f6647c 9d89b34 8f6647c c658776 8f6647c 9b7a7cf c658776 9b7a7cf c658776 9b7a7cf 05f78f2 9b7a7cf 05f78f2 8f6647c 9b7a7cf 8f6647c 9b7a7cf 8f6647c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import chainlit.data as cl_data
from modules.config.constants import (
LLAMA_PATH,
LITERAL_API_KEY_LOGGING,
LITERAL_API_URL,
)
from modules.chat_processor.literal_ai import CustomLiteralDataLayer
import json
import yaml
import os
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat.helpers import get_sources
import copy
from typing import Optional
from chainlit.types import ThreadDict
USER_TIMEOUT = 60_000
SYSTEM = "System 🖥️"
LLM = "LLM 🧠"
AGENT = "Agent <>"
YOU = "You 😃"
ERROR = "Error 🚫"
cl_data._data_layer = CustomLiteralDataLayer(
api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL
)
class Chatbot:
def __init__(self):
"""
Initialize the Chatbot class.
"""
self.config = self._load_config()
self.literal_client = cl_data._data_layer.client
def _load_config(self):
"""
Load the configuration from a YAML file.
"""
with open("modules/config/config.yml", "r") as f:
return yaml.safe_load(f)
@no_type_check
async def setup_llm(self):
"""
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
"""
llm_settings = cl.user_session.get("llm_settings", {})
chat_profile, retriever_method, memory_window, llm_style = (
llm_settings.get("chat_model"),
llm_settings.get("retriever_method"),
llm_settings.get("memory_window"),
llm_settings.get("llm_style"),
)
chain = cl.user_session.get("chain")
print(list(chain.store.values()))
memory_list = cl.user_session.get(
"memory",
(
list(chain.store.values())[0].messages
if len(chain.store.values()) > 0
else []
),
)
conversation_list = []
for message in memory_list:
# Convert to dictionary if possible
message_dict = message.to_dict() if hasattr(message, "to_dict") else message
# Check if the type attribute is present as a key or attribute
message_type = (
message_dict.get("type", None)
if isinstance(message_dict, dict)
else getattr(message, "type", None)
)
# Check if content is present as a key or attribute
message_content = (
message_dict.get("content", None)
if isinstance(message_dict, dict)
else getattr(message, "content", None)
)
if message_type in ["ai", "ai_message"]:
conversation_list.append(
{"type": "ai_message", "content": message_content}
)
elif message_type in ["human", "user_message"]:
conversation_list.append(
{"type": "user_message", "content": message_content}
)
else:
raise ValueError("Invalid message type")
print("\n\n\n")
print("history at setup_llm", conversation_list)
print("\n\n\n")
old_config = copy.deepcopy(self.config)
self.config["vectorstore"]["db_option"] = retriever_method
self.config["llm_params"]["memory_window"] = memory_window
self.config["llm_params"]["llm_style"] = llm_style
self.config["llm_params"]["llm_loader"] = chat_profile
self.llm_tutor.update_llm(
old_config, self.config
) # update only attributes that are changed
self.chain = self.llm_tutor.qa_bot(memory=conversation_list)
tags = [chat_profile, self.config["vectorstore"]["db_option"]]
cl.user_session.set("chain", self.chain)
cl.user_session.set("llm_tutor", self.llm_tutor)
@no_type_check
async def update_llm(self, new_settings: Dict[str, Any]):
"""
Update the LLM settings and reinitialize the LLM with the new settings.
Args:
new_settings (Dict[str, Any]): The new settings to update.
"""
cl.user_session.set("llm_settings", new_settings)
await self.inform_llm_settings()
await self.setup_llm()
async def make_llm_settings_widgets(self, config=None):
"""
Create and send the widgets for LLM settings configuration.
Args:
config: The configuration to use for setting up the widgets.
"""
config = config or self.config
await cl.ChatSettings(
[
cl.input_widget.Select(
id="chat_model",
label="Model Name (Default GPT-3)",
values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
initial_index=[
"local_llm",
"gpt-3.5-turbo-1106",
"gpt-4",
"gpt-4o-mini",
].index(config["llm_params"]["llm_loader"]),
),
cl.input_widget.Select(
id="retriever_method",
label="Retriever (Default FAISS)",
values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
config["vectorstore"]["db_option"]
),
),
cl.input_widget.Slider(
id="memory_window",
label="Memory Window (Default 3)",
initial=3,
min=0,
max=10,
step=1,
),
cl.input_widget.Switch(
id="view_sources", label="View Sources", initial=False
),
cl.input_widget.Switch(
id="stream_response", label="Stream response", initial=False
),
cl.input_widget.Select(
id="llm_style",
label="Type of Conversation (Default Normal)",
values=["Normal", "ELI5", "Socratic"],
initial_index=0,
),
]
).send()
@no_type_check
async def inform_llm_settings(self):
"""
Inform the user about the updated LLM settings and display them as a message.
"""
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
llm_tutor = cl.user_session.get("llm_tutor")
settings_dict = {
"model": llm_settings.get("chat_model"),
"retriever": llm_settings.get("retriever_method"),
"memory_window": llm_settings.get("memory_window"),
"num_docs_in_db": (
len(llm_tutor.vector_db)
if llm_tutor and hasattr(llm_tutor, "vector_db")
else 0
),
"view_sources": llm_settings.get("view_sources"),
}
await cl.Message(
author=SYSTEM,
content="LLM settings have been updated. You can continue with your Query!",
elements=[
cl.Text(
name="settings",
display="side",
content=json.dumps(settings_dict, indent=4),
language="json",
),
],
).send()
async def set_starters(self):
"""
Set starter messages for the chatbot.
"""
# Return Starters only if the chat is new
try:
thread = cl_data._data_layer.get_thread(
cl.context.session.thread_id
) # see if the thread has any steps
if thread.steps or len(thread.steps) > 0:
return None
except:
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transformers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didn't understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
def rename(self, orig_author: str):
"""
Rename the original author to a more user-friendly name.
Args:
orig_author (str): The original author's name.
Returns:
str: The renamed author.
"""
rename_dict = {"Chatbot": "AI Tutor"}
return rename_dict.get(orig_author, orig_author)
async def start(self):
"""
Start the chatbot, initialize settings widgets,
and display and load previous conversation if chat logging is enabled.
"""
await self.make_llm_settings_widgets(self.config)
user = cl.user_session.get("user")
self.user = {
"user_id": user.identifier,
"session_id": cl.context.session.thread_id,
}
print(self.user)
memory = cl.user_session.get("memory", [])
cl.user_session.set("user", self.user)
self.llm_tutor = LLMTutor(self.config, user=self.user)
self.chain = self.llm_tutor.qa_bot(memory=memory)
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chain", self.chain)
async def stream_response(self, response):
"""
Stream the response from the LLM.
Args:
response: The response from the LLM.
"""
msg = cl.Message(content="")
await msg.send()
output = {}
for chunk in response:
if "answer" in chunk:
await msg.stream_token(chunk["answer"])
for key in chunk:
if key not in output:
output[key] = chunk[key]
else:
output[key] += chunk[key]
return output
async def main(self, message):
"""
Process and Display the Conversation.
Args:
message: The incoming chat message.
"""
chain = cl.user_session.get("chain")
print("\n\n\n")
print(
"session history",
chain.get_session_history(
self.user["user_id"],
self.user["session_id"],
self.config["llm_params"]["memory_window"],
),
)
print("\n\n\n")
llm_settings = cl.user_session.get("llm_settings", {})
view_sources = llm_settings.get("view_sources", False)
stream = (llm_settings.get("stream_response", True)) or (
not self.config["llm_params"]["stream"]
)
user_query_dict = {"input": message.content}
# Define the base configuration
chain_config = {
"configurable": {
"user_id": self.user["user_id"],
"conversation_id": self.user["session_id"],
"memory_window": self.config["llm_params"]["memory_window"],
}
}
stream = False
if stream:
res = chain.stream(user_query=user_query_dict, config=chain_config)
res = await self.stream_response(res)
else:
res = await chain.invoke(user_query=user_query_dict, config=chain_config)
answer = res.get("answer", res.get("result"))
with cl_data._data_layer.client.step(
type="retrieval",
name="RAG",
thread_id=cl.context.session.thread_id,
# tags=self.tags,
) as step:
step.input = {"question": user_query_dict["input"]}
step.output = {
"chat_history": res.get("chat_history"),
"context": res.get("context"),
"answer": answer,
"rephrase_prompt": res.get("rephrase_prompt"),
"qa_prompt": res.get("qa_prompt"),
}
step.metadata = self.config
answer_with_sources, source_elements, sources_dict = get_sources(
res, answer, stream=stream, view_sources=view_sources
)
await cl.Message(
content=answer_with_sources, elements=source_elements, author=LLM
).send()
async def on_chat_resume(self, thread: ThreadDict):
steps = thread["steps"]
# conversation_pairs = []
conversation_list = []
user_message = None
k = self.config["llm_params"]["memory_window"]
count = 0
print(steps)
for step in reversed(steps):
print(step["type"])
if step["name"] not in [SYSTEM]:
if step["type"] == "user_message":
conversation_list.append(
{"type": "user_message", "content": step["output"]}
)
elif step["type"] == "assistant_message":
if step["name"] == LLM:
conversation_list.append(
{"type": "ai_message", "content": step["output"]}
)
else:
raise ValueError("Invalid message type")
count += 1
if count >= 2 * k: # 2 * k to account for both user and assistant messages
break
conversation_list = conversation_list[::-1]
print("\n\n\n")
print("history at on_chat_resume", conversation_list)
print(len(conversation_list))
print("\n\n\n")
cl.user_session.set("memory", conversation_list)
await self.start()
@cl.oauth_callback
def auth_callback(
provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,
) -> Optional[cl.User]:
return default_user
chatbot = Chatbot()
cl.set_starters(chatbot.set_starters)
cl.author_rename(chatbot.rename)
cl.on_chat_start(chatbot.start)
cl.on_chat_resume(chatbot.on_chat_resume)
cl.on_message(chatbot.main)
cl.on_settings_update(chatbot.update_llm)
|