File size: 7,170 Bytes
1796f63 2c49234 1796f63 2c49234 1796f63 2c49234 da00fb2 2c49234 da00fb2 1796f63 8ee0d3b 2c49234 1796f63 2c49234 1796f63 8ee0d3b 1796f63 2c49234 ab2ff67 2c49234 ab2ff67 8ee0d3b ab2ff67 8ee0d3b 2c49234 ab2ff67 2c49234 ab2ff67 2c49234 ab2ff67 1796f63 ab2ff67 1796f63 8ee0d3b 1796f63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
from literalai import AsyncLiteralClient
from datetime import datetime, timedelta, timezone
from modules.config.constants import COOLDOWN_TIME, TOKENS_LEFT, REGEN_TIME
from typing_extensions import TypedDict
import tiktoken
from typing import Any, Generic, List, Literal, Optional, TypeVar, Union
Field = TypeVar("Field")
Operators = TypeVar("Operators")
Value = TypeVar("Value")
BOOLEAN_OPERATORS = Literal["is", "nis"]
STRING_OPERATORS = Literal["eq", "neq", "ilike", "nilike"]
NUMBER_OPERATORS = Literal["eq", "neq", "gt", "gte", "lt", "lte"]
STRING_LIST_OPERATORS = Literal["in", "nin"]
DATETIME_OPERATORS = Literal["gte", "lte", "gt", "lt"]
OPERATORS = Union[
BOOLEAN_OPERATORS,
STRING_OPERATORS,
NUMBER_OPERATORS,
STRING_LIST_OPERATORS,
DATETIME_OPERATORS,
]
class Filter(Generic[Field], TypedDict, total=False):
field: Field
operator: OPERATORS
value: Any
path: Optional[str]
class OrderBy(Generic[Field], TypedDict):
column: Field
direction: Literal["ASC", "DESC"]
threads_filterable_fields = Literal[
"id",
"createdAt",
"name",
"stepType",
"stepName",
"stepOutput",
"metadata",
"tokenCount",
"tags",
"participantId",
"participantIdentifiers",
"scoreValue",
"duration",
]
threads_orderable_fields = Literal["createdAt", "tokenCount"]
threads_filters = List[Filter[threads_filterable_fields]]
threads_order_by = OrderBy[threads_orderable_fields]
steps_filterable_fields = Literal[
"id",
"name",
"input",
"output",
"participantIdentifier",
"startTime",
"endTime",
"metadata",
"parentId",
"threadId",
"error",
"tags",
]
steps_orderable_fields = Literal["createdAt"]
steps_filters = List[Filter[steps_filterable_fields]]
steps_order_by = OrderBy[steps_orderable_fields]
users_filterable_fields = Literal[
"id",
"createdAt",
"identifier",
"lastEngaged",
"threadCount",
"tokenCount",
"metadata",
]
users_filters = List[Filter[users_filterable_fields]]
scores_filterable_fields = Literal[
"id",
"createdAt",
"participant",
"name",
"tags",
"value",
"type",
"comment",
]
scores_orderable_fields = Literal["createdAt"]
scores_filters = List[Filter[scores_filterable_fields]]
scores_order_by = OrderBy[scores_orderable_fields]
generation_filterable_fields = Literal[
"id",
"createdAt",
"model",
"duration",
"promptLineage",
"promptVersion",
"tags",
"score",
"participant",
"tokenCount",
"error",
]
generation_orderable_fields = Literal[
"createdAt",
"tokenCount",
"model",
"provider",
"participant",
"duration",
]
generations_filters = List[Filter[generation_filterable_fields]]
generations_order_by = OrderBy[generation_orderable_fields]
literal_client = AsyncLiteralClient(api_key=os.getenv("LITERAL_API_KEY_LOGGING"))
# For consistency, use dictionary for user_info
def convert_to_dict(user_info):
# if already a dictionary, return as is
if isinstance(user_info, dict):
return user_info
if hasattr(user_info, "__dict__"):
user_info = user_info.__dict__
return user_info
def get_time():
return datetime.now(timezone.utc).isoformat()
async def get_user_details(user_email_id):
user_info = await literal_client.api.get_or_create_user(identifier=user_email_id)
return user_info
async def update_user_info(user_info):
# if object type, convert to dictionary
user_info = convert_to_dict(user_info)
await literal_client.api.update_user(
id=user_info["id"],
identifier=user_info["identifier"],
metadata=user_info["metadata"],
)
async def check_user_cooldown(user_info, current_time):
# # Check if no tokens left
tokens_left = user_info.metadata.get("tokens_left", 0)
if tokens_left > 0 and not user_info.metadata.get("in_cooldown", False):
return False, None
user_info = convert_to_dict(user_info)
last_message_time_str = user_info["metadata"].get("last_message_time")
# Convert from ISO format string to datetime object and ensure UTC timezone
last_message_time = datetime.fromisoformat(last_message_time_str).replace(
tzinfo=timezone.utc
)
current_time = datetime.fromisoformat(current_time).replace(tzinfo=timezone.utc)
# Calculate the elapsed time
elapsed_time = current_time - last_message_time
elapsed_time_in_seconds = elapsed_time.total_seconds()
# Calculate when the cooldown period ends
cooldown_end_time = last_message_time + timedelta(seconds=COOLDOWN_TIME)
cooldown_end_time_iso = cooldown_end_time.isoformat()
# Debug: Print the cooldown end time
print(f"Cooldown end time (ISO): {cooldown_end_time_iso}")
# Check if the user is still in cooldown
if elapsed_time_in_seconds < COOLDOWN_TIME:
return True, cooldown_end_time_iso # Return in ISO 8601 format
user_info["metadata"]["in_cooldown"] = False
# If not in cooldown, regenerate tokens
await reset_tokens_for_user(user_info)
return False, None
async def reset_tokens_for_user(user_info):
user_info = convert_to_dict(user_info)
last_message_time_str = user_info["metadata"].get("last_message_time")
last_message_time = datetime.fromisoformat(last_message_time_str).replace(
tzinfo=timezone.utc
)
current_time = datetime.fromisoformat(get_time()).replace(tzinfo=timezone.utc)
# Calculate the elapsed time since the last message
elapsed_time_in_seconds = (current_time - last_message_time).total_seconds()
# Current token count (can be negative)
current_tokens = user_info["metadata"].get("tokens_left_at_last_message", 0)
current_tokens = min(current_tokens, TOKENS_LEFT)
# Maximum tokens that can be regenerated
max_tokens = user_info["metadata"].get("max_tokens", TOKENS_LEFT)
# Calculate how many tokens should have been regenerated proportionally
if current_tokens < max_tokens:
# Calculate the regeneration rate per second based on REGEN_TIME for full regeneration
regeneration_rate_per_second = max_tokens / REGEN_TIME
# Calculate how many tokens should have been regenerated based on the elapsed time
tokens_to_regenerate = int(
elapsed_time_in_seconds * regeneration_rate_per_second
)
# Ensure the new token count does not exceed max_tokens
new_token_count = min(current_tokens + tokens_to_regenerate, max_tokens)
print(
f"\n\n Adding {tokens_to_regenerate} tokens to the user, Time elapsed: {elapsed_time_in_seconds} seconds, Tokens after regeneration: {new_token_count}, Tokens before: {current_tokens} \n\n"
)
# Update the user's token count
user_info["metadata"]["tokens_left"] = new_token_count
await update_user_info(user_info)
async def get_thread_step_info(thread_id):
step = await literal_client.api.get_step(thread_id)
return step
def get_num_tokens(text, model):
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(text)
return len(tokens)
|