File size: 15,379 Bytes
9b7a7cf
b409192
9b7a7cf
 
 
 
 
 
 
8f6647c
6158da4
8f6647c
e029e22
 
f51bb92
b409192
 
 
 
 
e029e22
 
9b7a7cf
b409192
8f6647c
 
 
 
 
 
 
 
b409192
 
8f6647c
b409192
 
 
 
 
 
 
 
 
 
 
 
 
9b7a7cf
 
8f6647c
b409192
e029e22
 
 
b409192
8f6647c
 
e029e22
 
 
8f6647c
e029e22
8f6647c
 
e029e22
 
 
 
b409192
 
8f6647c
e19e333
e029e22
 
 
 
e19e333
e029e22
8f6647c
 
c658776
 
 
 
 
 
 
 
b409192
8f6647c
e029e22
 
 
 
 
e19e333
e029e22
 
 
e19e333
b409192
 
e19e333
 
 
 
 
b409192
8f6647c
 
 
 
 
 
b409192
 
8f6647c
e029e22
 
 
 
 
 
 
8f6647c
 
 
 
 
e029e22
 
 
 
 
 
8f6647c
 
 
 
 
 
9b7a7cf
 
 
 
 
 
 
8f6647c
 
 
 
 
9b7a7cf
 
 
8f6647c
 
 
 
 
 
 
 
 
 
 
 
9d89b34
e19e333
 
 
 
 
 
 
 
9d89b34
e029e22
 
 
b409192
e029e22
aaaac46
8f6647c
e029e22
8f6647c
 
e029e22
 
 
 
8f6647c
 
e029e22
 
 
 
 
 
 
 
 
 
e19e333
e029e22
8f6647c
 
 
 
 
 
 
 
 
e029e22
8f6647c
 
 
 
e029e22
 
 
9b7a7cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f6647c
 
e029e22
 
 
 
 
 
 
 
 
8f6647c
 
 
c658776
e029e22
 
 
 
8f6647c
b409192
 
e029e22
 
 
 
9b7a7cf
e029e22
9b7a7cf
c658776
 
e029e22
 
b409192
 
 
e19e333
 
 
 
 
b409192
 
8f6647c
 
 
b409192
 
9d89b34
e029e22
9d89b34
e029e22
 
9d89b34
e029e22
4de6b1a
 
 
 
9d89b34
9b7a7cf
 
4de6b1a
 
 
 
 
 
9d89b34
 
 
 
 
 
 
 
 
9b7a7cf
b409192
 
9d89b34
c658776
9d89b34
 
e19e333
 
9b7a7cf
 
 
 
 
 
 
 
 
9d89b34
 
9b7a7cf
9d89b34
9b7a7cf
b409192
 
 
 
4de6b1a
9d89b34
4de6b1a
b409192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b7a7cf
8f6647c
9d89b34
8f6647c
e19e333
8f6647c
b409192
 
e19e333
b409192
e19e333
 
 
 
 
 
 
 
b409192
e19e333
 
 
 
 
 
 
 
 
b409192
e19e333
 
b409192
c658776
b409192
 
 
 
c658776
8f6647c
9b7a7cf
 
 
b409192
c658776
 
9b7a7cf
05f78f2
 
9b7a7cf
 
 
 
05f78f2
 
8f6647c
e19e333
5a7dbeb
e19e333
 
 
5a7dbeb
b409192
 
 
 
 
 
e19e333
b409192
 
 
 
 
 
 
 
e19e333
b409192
9b7a7cf
e19e333
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import chainlit.data as cl_data
import asyncio
from modules.config.constants import (
    LLAMA_PATH,
    LITERAL_API_KEY_LOGGING,
    LITERAL_API_URL,
)
from modules.chat_processor.literal_ai import CustomLiteralDataLayer

import json
import yaml
import os
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat.helpers import (
    get_sources,
    get_history_chat_resume,
    get_history_setup_llm,
)
import copy
from typing import Optional
from chainlit.types import ThreadDict
import time

USER_TIMEOUT = 60_000
SYSTEM = "System 🖥️"
LLM = "LLM 🧠"
AGENT = "Agent <>"
YOU = "You 😃"
ERROR = "Error 🚫"

with open("modules/config/config.yml", "r") as f:
    config = yaml.safe_load(f)


async def setup_data_layer():
    """
    Set up the data layer for chat logging.
    """
    if config["chat_logging"]["log_chat"]:
        data_layer = CustomLiteralDataLayer(
            api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL
        )
    else:
        data_layer = None

    return data_layer


class Chatbot:
    def __init__(self, config):
        """
        Initialize the Chatbot class.
        """
        self.config = config

    def _load_config(self):
        """
        Load the configuration from a YAML file.
        """
        with open("modules/config/config.yml", "r") as f:
            return yaml.safe_load(f)

    @no_type_check
    async def setup_llm(self):
        """
        Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
        """
        start_time = time.time()

        llm_settings = cl.user_session.get("llm_settings", {})
        chat_profile, retriever_method, memory_window, llm_style, generate_follow_up = (
            llm_settings.get("chat_model"),
            llm_settings.get("retriever_method"),
            llm_settings.get("memory_window"),
            llm_settings.get("llm_style"),
            llm_settings.get("follow_up_questions"),
        )

        chain = cl.user_session.get("chain")
        memory_list = cl.user_session.get(
            "memory",
            (
                list(chain.store.values())[0].messages
                if len(chain.store.values()) > 0
                else []
            ),
        )
        conversation_list = get_history_setup_llm(memory_list)

        old_config = copy.deepcopy(self.config)
        self.config["vectorstore"]["db_option"] = retriever_method
        self.config["llm_params"]["memory_window"] = memory_window
        self.config["llm_params"]["llm_style"] = llm_style
        self.config["llm_params"]["llm_loader"] = chat_profile
        self.config["llm_params"]["generate_follow_up"] = generate_follow_up

        self.llm_tutor.update_llm(
            old_config, self.config
        )  # update only llm attributes that are changed
        self.chain = self.llm_tutor.qa_bot(
            memory=conversation_list,
            callbacks=(
                [cl.LangchainCallbackHandler()]
                if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
                else None
            ),
        )

        tags = [chat_profile, self.config["vectorstore"]["db_option"]]

        cl.user_session.set("chain", self.chain)
        cl.user_session.set("llm_tutor", self.llm_tutor)

        print("Time taken to setup LLM: ", time.time() - start_time)

    @no_type_check
    async def update_llm(self, new_settings: Dict[str, Any]):
        """
        Update the LLM settings and reinitialize the LLM with the new settings.

        Args:
            new_settings (Dict[str, Any]): The new settings to update.
        """
        cl.user_session.set("llm_settings", new_settings)
        await self.inform_llm_settings()
        await self.setup_llm()

    async def make_llm_settings_widgets(self, config=None):
        """
        Create and send the widgets for LLM settings configuration.

        Args:
            config: The configuration to use for setting up the widgets.
        """
        config = config or self.config
        await cl.ChatSettings(
            [
                cl.input_widget.Select(
                    id="chat_model",
                    label="Model Name (Default GPT-3)",
                    values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
                    initial_index=[
                        "local_llm",
                        "gpt-3.5-turbo-1106",
                        "gpt-4",
                        "gpt-4o-mini",
                    ].index(config["llm_params"]["llm_loader"]),
                ),
                cl.input_widget.Select(
                    id="retriever_method",
                    label="Retriever (Default FAISS)",
                    values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
                    initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
                        config["vectorstore"]["db_option"]
                    ),
                ),
                cl.input_widget.Slider(
                    id="memory_window",
                    label="Memory Window (Default 3)",
                    initial=3,
                    min=0,
                    max=10,
                    step=1,
                ),
                cl.input_widget.Switch(
                    id="view_sources", label="View Sources", initial=False
                ),
                cl.input_widget.Switch(
                    id="stream_response",
                    label="Stream response",
                    initial=config["llm_params"]["stream"],
                ),
                cl.input_widget.Switch(
                    id="follow_up_questions",
                    label="Generate follow up questions",
                    initial=False,
                ),
                cl.input_widget.Select(
                    id="llm_style",
                    label="Type of Conversation (Default Normal)",
                    values=["Normal", "ELI5"],
                    initial_index=0,
                ),
            ]
        ).send()

    @no_type_check
    async def inform_llm_settings(self):
        """
        Inform the user about the updated LLM settings and display them as a message.
        """
        llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
        llm_tutor = cl.user_session.get("llm_tutor")
        settings_dict = {
            "model": llm_settings.get("chat_model"),
            "retriever": llm_settings.get("retriever_method"),
            "memory_window": llm_settings.get("memory_window"),
            "num_docs_in_db": (
                len(llm_tutor.vector_db)
                if llm_tutor and hasattr(llm_tutor, "vector_db")
                else 0
            ),
            "view_sources": llm_settings.get("view_sources"),
            "follow_up_questions": llm_settings.get("follow_up_questions"),
        }
        await cl.Message(
            author=SYSTEM,
            content="LLM settings have been updated. You can continue with your Query!",
            elements=[
                cl.Text(
                    name="settings",
                    display="side",
                    content=json.dumps(settings_dict, indent=4),
                    language="json",
                ),
            ],
        ).send()

    async def set_starters(self):
        """
        Set starter messages for the chatbot.
        """
        # Return Starters only if the chat is new

        try:
            thread = cl_data._data_layer.get_thread(
                cl.context.session.thread_id
            )  # see if the thread has any steps
            if thread.steps or len(thread.steps) > 0:
                return None
        except:
            return [
                cl.Starter(
                    label="recording on CNNs?",
                    message="Where can I find the recording for the lecture on Transformers?",
                    icon="/public/adv-screen-recorder-svgrepo-com.svg",
                ),
                cl.Starter(
                    label="where's the slides?",
                    message="When are the lectures? I can't find the schedule.",
                    icon="/public/alarmy-svgrepo-com.svg",
                ),
                cl.Starter(
                    label="Due Date?",
                    message="When is the final project due?",
                    icon="/public/calendar-samsung-17-svgrepo-com.svg",
                ),
                cl.Starter(
                    label="Explain backprop.",
                    message="I didn't understand the math behind backprop, could you explain it?",
                    icon="/public/acastusphoton-svgrepo-com.svg",
                ),
            ]

    def rename(self, orig_author: str):
        """
        Rename the original author to a more user-friendly name.

        Args:
            orig_author (str): The original author's name.

        Returns:
            str: The renamed author.
        """
        rename_dict = {"Chatbot": "AI Tutor"}
        return rename_dict.get(orig_author, orig_author)

    async def start(self):
        """
        Start the chatbot, initialize settings widgets,
        and display and load previous conversation if chat logging is enabled.
        """

        start_time = time.time()

        await self.make_llm_settings_widgets(self.config)
        user = cl.user_session.get("user")
        self.user = {
            "user_id": user.identifier,
            "session_id": cl.context.session.thread_id,
        }

        memory = cl.user_session.get("memory", [])

        cl.user_session.set("user", self.user)
        self.llm_tutor = LLMTutor(self.config, user=self.user)

        self.chain = self.llm_tutor.qa_bot(
            memory=memory,
            callbacks=(
                [cl.LangchainCallbackHandler()]
                if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
                else None
            ),
        )
        self.question_generator = self.llm_tutor.question_generator
        cl.user_session.set("llm_tutor", self.llm_tutor)
        cl.user_session.set("chain", self.chain)

        print("Time taken to start LLM: ", time.time() - start_time)

    async def stream_response(self, response):
        """
        Stream the response from the LLM.

        Args:
            response: The response from the LLM.
        """
        msg = cl.Message(content="")
        await msg.send()

        output = {}
        for chunk in response:
            if "answer" in chunk:
                await msg.stream_token(chunk["answer"])

            for key in chunk:
                if key not in output:
                    output[key] = chunk[key]
                else:
                    output[key] += chunk[key]
        return output

    async def main(self, message):
        """
        Process and Display the Conversation.

        Args:
            message: The incoming chat message.
        """

        start_time = time.time()

        chain = cl.user_session.get("chain")

        llm_settings = cl.user_session.get("llm_settings", {})
        view_sources = llm_settings.get("view_sources", False)
        stream = llm_settings.get("stream_response", False)
        steam = False  # Fix streaming
        user_query_dict = {"input": message.content}
        # Define the base configuration
        chain_config = {
            "configurable": {
                "user_id": self.user["user_id"],
                "conversation_id": self.user["session_id"],
                "memory_window": self.config["llm_params"]["memory_window"],
            }
        }

        if stream:
            res = chain.stream(user_query=user_query_dict, config=chain_config)
            res = await self.stream_response(res)
        else:
            res = await chain.invoke(
                user_query=user_query_dict,
                config=chain_config,
            )

        answer = res.get("answer", res.get("result"))

        if cl_data._data_layer is not None:
            with cl_data._data_layer.client.step(
                type="run",
                name="step_info",
                thread_id=cl.context.session.thread_id,
                # tags=self.tags,
            ) as step:

                step.input = {"question": user_query_dict["input"]}

                step.output = {
                    "chat_history": res.get("chat_history"),
                    "context": res.get("context"),
                    "answer": answer,
                    "rephrase_prompt": res.get("rephrase_prompt"),
                    "qa_prompt": res.get("qa_prompt"),
                }
                step.metadata = self.config

        answer_with_sources, source_elements, sources_dict = get_sources(
            res, answer, stream=stream, view_sources=view_sources
        )
        answer_with_sources = answer_with_sources.replace("$$", "$")

        print("Time taken to process the message: ", time.time() - start_time)

        actions = []

        if self.config["llm_params"]["generate_follow_up"]:
            start_time = time.time()
            list_of_questions = self.question_generator.generate_questions(
                query=user_query_dict["input"],
                response=answer,
                chat_history=res.get("chat_history"),
                context=res.get("context"),
            )

            for question in list_of_questions:

                actions.append(
                    cl.Action(
                        name="follow up question",
                        value="example_value",
                        description=question,
                        label=question,
                    )
                )

            print("Time taken to generate questions: ", time.time() - start_time)

        await cl.Message(
            content=answer_with_sources,
            elements=source_elements,
            author=LLM,
            actions=actions,
        ).send()

    async def on_chat_resume(self, thread: ThreadDict):
        steps = thread["steps"]
        k = self.config["llm_params"]["memory_window"]
        conversation_list = get_history_chat_resume(steps, k, SYSTEM, LLM)
        cl.user_session.set("memory", conversation_list)
        await self.start()

    @cl.oauth_callback
    def auth_callback(
        provider_id: str,
        token: str,
        raw_user_data: Dict[str, str],
        default_user: cl.User,
    ) -> Optional[cl.User]:
        return default_user

    async def on_follow_up(self, action: cl.Action):
        message = await cl.Message(
            content=action.description,
            type="user_message",
            author=self.user["user_id"],
        ).send()
        await self.main(message)


chatbot = Chatbot(config=config)


async def start_app():
    cl_data._data_layer = await setup_data_layer()
    chatbot.literal_client = cl_data._data_layer.client if cl_data._data_layer else None
    cl.set_starters(chatbot.set_starters)
    cl.author_rename(chatbot.rename)
    cl.on_chat_start(chatbot.start)
    cl.on_chat_resume(chatbot.on_chat_resume)
    cl.on_message(chatbot.main)
    cl.on_settings_update(chatbot.update_llm)
    cl.action_callback("follow up question")(chatbot.on_follow_up)


asyncio.run(start_app())