File size: 8,380 Bytes
a2ac5f7
1e2550f
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7da99
 
 
 
 
 
 
 
 
 
 
f51bb92
 
 
 
 
9a7da99
f51bb92
 
 
9a7da99
f51bb92
 
9a7da99
f51bb92
 
 
9a7da99
f51bb92
9a7da99
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2daaee
f51bb92
ea7b686
 
f51bb92
 
a2ac5f7
 
 
 
 
 
 
 
 
 
f51bb92
 
 
 
 
 
 
 
 
 
 
c82efb6
 
 
 
 
 
f51bb92
 
d3eb480
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
f2daaee
f51bb92
ea7b686
 
9b7a7cf
 
 
65ce8c0
 
 
9b7a7cf
 
 
f51bb92
 
65ce8c0
f51bb92
 
 
 
9b7a7cf
f2beb6a
9b7a7cf
f2beb6a
 
8f6647c
f2beb6a
8f6647c
 
 
 
f2beb6a
f51bb92
 
 
d92c997
 
 
 
 
 
 
 
eefbb54
 
 
 
d92c997
 
 
 
f51bb92
d92c997
4308a1a
 
 
 
f51bb92
 
 
9b7a7cf
1e2550f
 
4308a1a
1e2550f
65ce8c0
4308a1a
1e2550f
 
65ce8c0
9b7a7cf
 
 
 
65ce8c0
 
 
f2beb6a
 
f51bb92
 
1e2550f
f51bb92
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from modules.vectorstore.vectorstore import VectorStore
from modules.dataloader.helpers import get_urls_from_file
from modules.dataloader.webpage_crawler import WebpageCrawler
from modules.dataloader.data_loader import DataLoader
from modules.vectorstore.embedding_model_loader import EmbeddingModelLoader
import logging
import os
import time
import asyncio


class VectorStoreManager:
    def __init__(self, config, logger=None):
        self.config = config
        self.document_names = None

        # Set up logging to both console and a file
        self.logger = logger or self._setup_logging()
        self.webpage_crawler = WebpageCrawler()
        self.vector_db = VectorStore(self.config)

        self.logger.info("VectorDB instance instantiated")

    def _setup_logging(self):
        logger = logging.getLogger(__name__)
        if not logger.hasHandlers():
            logger.setLevel(logging.INFO)
            formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

            # Console Handler
            console_handler = logging.StreamHandler()
            console_handler.setLevel(logging.INFO)
            console_handler.setFormatter(formatter)
            logger.addHandler(console_handler)

            # Ensure log directory exists
            log_directory = self.config["log_dir"]
            os.makedirs(log_directory, exist_ok=True)

            # File Handler
            log_file_path = os.path.join(log_directory, "vector_db.log")
            file_handler = logging.FileHandler(log_file_path, mode="w")
            file_handler.setLevel(logging.INFO)
            file_handler.setFormatter(formatter)
            logger.addHandler(file_handler)

        return logger

    def load_files(self):
        files = os.listdir(self.config["vectorstore"]["data_path"])
        files = [
            os.path.join(self.config["vectorstore"]["data_path"], file)
            for file in files
        ]
        urls = get_urls_from_file(self.config["vectorstore"]["url_file_path"])
        if self.config["vectorstore"]["expand_urls"]:
            all_urls = []
            for url in urls:
                loop = asyncio.get_event_loop()
                all_urls.extend(
                    loop.run_until_complete(
                        self.webpage_crawler.get_all_pages(
                            url, url
                        )  # only get child urls, if you want to get all urls, replace the second argument with the base url
                    )
                )
            urls = all_urls
        return files, urls

    def create_embedding_model(self):
        self.logger.info("Creating embedding function")
        embedding_model_loader = EmbeddingModelLoader(self.config)
        embedding_model = embedding_model_loader.load_embedding_model()
        return embedding_model

    def initialize_database(
        self,
        document_chunks: list,
        document_names: list,
        documents: list,
        document_metadata: list,
    ):
        if self.config["vectorstore"]["db_option"] in ["FAISS", "Chroma", "RAPTOR"]:
            self.embedding_model = self.create_embedding_model()
        else:
            self.embedding_model = None

        self.logger.info("Initializing vector_db")
        self.logger.info(
            "\tUsing {} as db_option".format(self.config["vectorstore"]["db_option"])
        )
        self.vector_db._create_database(
            document_chunks,
            document_names,
            documents,
            document_metadata,
            self.embedding_model,
        )

    def create_database(self):
        start_time = time.time()  # Start time for creating database
        data_loader = DataLoader(self.config, self.logger)
        self.logger.info("Loading data")
        files, urls = self.load_files()
        files, webpages = self.webpage_crawler.clean_url_list(urls)
        self.logger.info(f"Number of files: {len(files)}")
        self.logger.info(f"Number of webpages: {len(webpages)}")
        if f"{self.config['vectorstore']['url_file_path']}" in files:
            files.remove(f"{self.config['vectorstores']['url_file_path']}")  # cleanup
        (
            document_chunks,
            document_names,
            documents,
            document_metadata,
        ) = data_loader.get_chunks(files, webpages)
        num_documents = len(document_chunks)
        self.logger.info(f"Number of documents in the DB: {num_documents}")
        metadata_keys = list(document_metadata[0].keys()) if document_metadata else []
        self.logger.info(f"Metadata keys: {metadata_keys}")
        self.logger.info("Completed loading data")
        self.initialize_database(
            document_chunks, document_names, documents, document_metadata
        )
        end_time = time.time()  # End time for creating database
        self.logger.info("Created database")
        self.logger.info(
            f"Time taken to create database: {end_time - start_time} seconds"
        )

    def load_database(self):
        start_time = time.time()  # Start time for loading database
        if self.config["vectorstore"]["db_option"] in ["FAISS", "Chroma", "RAPTOR"]:
            self.embedding_model = self.create_embedding_model()
        else:
            self.embedding_model = None
        try:
            self.loaded_vector_db = self.vector_db._load_database(self.embedding_model)
        except Exception as e:
            raise ValueError(
                f"Error loading database, check if it exists. if not run python -m modules.vectorstore.store_manager / Resteart the HF Space: {e}"
            )
            # print(f"Creating database")
            # self.create_database()
            # self.loaded_vector_db = self.vector_db._load_database(self.embedding_model)
        end_time = time.time()  # End time for loading database
        self.logger.info(
            f"Time taken to load database {self.config['vectorstore']['db_option']}: {end_time - start_time} seconds"
        )
        self.logger.info("Loaded database")
        return self.loaded_vector_db

    def load_from_HF(self, HF_PATH):
        start_time = time.time()  # Start time for loading database
        self.vector_db._load_from_HF(HF_PATH)
        end_time = time.time()
        self.logger.info(
            f"Time taken to Download database {self.config['vectorstore']['db_option']} from Hugging Face: {end_time - start_time} seconds"
        )
        self.logger.info("Downloaded database")

    def __len__(self):
        return len(self.vector_db)


if __name__ == "__main__":
    import yaml
    import argparse

    # Add argument parsing for config files
    parser = argparse.ArgumentParser(description="Load configuration files.")
    parser.add_argument(
        "--config_file", type=str, help="Path to the main config file", required=True
    )
    parser.add_argument(
        "--project_config_file",
        type=str,
        help="Path to the project config file",
        required=True,
    )
    args = parser.parse_args()

    with open(args.config_file, "r") as f:
        config = yaml.safe_load(f)
    with open(args.project_config_file, "r") as f:
        project_config = yaml.safe_load(f)

    # combine the two configs
    config.update(project_config)
    print(config)
    print(f"Trying to create database with config: {config}")
    vector_db = VectorStoreManager(config)
    if config["vectorstore"]["load_from_HF"]:
        if (
            config["vectorstore"]["db_option"]
            in config["retriever"]["retriever_hf_paths"]
        ):
            vector_db.load_from_HF(
                HF_PATH=config["retriever"]["retriever_hf_paths"][
                    config["vectorstore"]["db_option"]
                ]
            )
        else:
            # print(f"HF_PATH not available for {config['vectorstore']['db_option']}")
            # print("Creating database")
            # vector_db.create_database()
            raise ValueError(
                f"HF_PATH not available for {config['vectorstore']['db_option']}"
            )
    else:
        vector_db.create_database()
    print("Created database")

    print("Trying to load the database")
    vector_db = VectorStoreManager(config)
    vector_db.load_database()
    print("Loaded database")

    print(f"View the logs at {config['log_dir']}/vector_db.log")