tutor_dev / code /main.py
Farid Karimli
Google OAuth implement
05f78f2
raw
history blame
10.8 kB
import json
import yaml
import os
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat_processor.chat_processor import ChatProcessor
from modules.config.constants import LLAMA_PATH
from modules.chat.helpers import get_sources
import copy
from typing import Optional
USER_TIMEOUT = 60_000
SYSTEM = "System 🖥️"
LLM = "LLM 🧠"
AGENT = "Agent <>"
YOU = "You 😃"
ERROR = "Error 🚫"
class Chatbot:
def __init__(self):
"""
Initialize the Chatbot class.
"""
self.config = self._load_config()
def _load_config(self):
"""
Load the configuration from a YAML file.
"""
with open("modules/config/config.yml", "r") as f:
return yaml.safe_load(f)
@no_type_check
async def setup_llm(self):
"""
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
"""
llm_settings = cl.user_session.get("llm_settings", {})
chat_profile, retriever_method, memory_window, llm_style = (
llm_settings.get("chat_model"),
llm_settings.get("retriever_method"),
llm_settings.get("memory_window"),
llm_settings.get("llm_style"),
)
chain = cl.user_session.get("chain")
memory = chain.memory if chain else []
old_config = copy.deepcopy(self.config)
self.config["vectorstore"]["db_option"] = retriever_method
self.config["llm_params"]["memory_window"] = memory_window
self.config["llm_params"]["llm_style"] = llm_style
self.config["llm_params"]["llm_loader"] = chat_profile
self.llm_tutor.update_llm(
old_config, self.config
) # update only attributes that are changed
self.chain = self.llm_tutor.qa_bot(memory=memory)
tags = [chat_profile, self.config["vectorstore"]["db_option"]]
self.chat_processor.config = self.config
cl.user_session.set("chain", self.chain)
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chat_processor", self.chat_processor)
@no_type_check
async def update_llm(self, new_settings: Dict[str, Any]):
"""
Update the LLM settings and reinitialize the LLM with the new settings.
Args:
new_settings (Dict[str, Any]): The new settings to update.
"""
cl.user_session.set("llm_settings", new_settings)
await self.inform_llm_settings()
await self.setup_llm()
async def make_llm_settings_widgets(self, config=None):
"""
Create and send the widgets for LLM settings configuration.
Args:
config: The configuration to use for setting up the widgets.
"""
config = config or self.config
await cl.ChatSettings(
[
cl.input_widget.Select(
id="chat_model",
label="Model Name (Default GPT-3)",
values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"],
initial_index=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"].index(config["llm_params"]["llm_loader"]),
),
cl.input_widget.Select(
id="retriever_method",
label="Retriever (Default FAISS)",
values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(config["vectorstore"]["db_option"])
),
cl.input_widget.Slider(
id="memory_window",
label="Memory Window (Default 3)",
initial=3,
min=0,
max=10,
step=1,
),
cl.input_widget.Switch(
id="view_sources", label="View Sources", initial=False
),
cl.input_widget.Switch(
id="stream_response", label="Stream response", initial=True
),
cl.input_widget.Select(
id="llm_style",
label="Type of Conversation (Default Normal)",
values=["Normal", "ELI5", "Socratic"],
initial_index=0,
),
]
).send()
@no_type_check
async def inform_llm_settings(self):
"""
Inform the user about the updated LLM settings and display them as a message.
"""
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
llm_tutor = cl.user_session.get("llm_tutor")
settings_dict = {
"model": llm_settings.get("chat_model"),
"retriever": llm_settings.get("retriever_method"),
"memory_window": llm_settings.get("memory_window"),
"num_docs_in_db": (
len(llm_tutor.vector_db)
if llm_tutor and hasattr(llm_tutor, "vector_db")
else 0
),
"view_sources": llm_settings.get("view_sources"),
}
await cl.Message(
author=SYSTEM,
content="LLM settings have been updated. You can continue with your Query!",
elements=[
cl.Text(
name="settings",
display="side",
content=json.dumps(settings_dict, indent=4),
language="json",
),
],
).send()
async def set_starters(self):
"""
Set starter messages for the chatbot.
"""
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transformers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didn't understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
def rename(self, orig_author: str):
"""
Rename the original author to a more user-friendly name.
Args:
orig_author (str): The original author's name.
Returns:
str: The renamed author.
"""
rename_dict = {"Chatbot": "AI Tutor"}
return rename_dict.get(orig_author, orig_author)
async def start(self):
"""
Start the chatbot, initialize settings widgets,
and display and load previous conversation if chat logging is enabled.
"""
await cl.Message(content="Welcome back! Setting up your session...").send()
await self.make_llm_settings_widgets(self.config)
user = cl.user_session.get("user")
self.user = {
"user_id": user.identifier,
"session_id": "1234",
}
cl.user_session.set("user", self.user)
self.chat_processor = ChatProcessor(self.config, self.user)
self.llm_tutor = LLMTutor(self.config, user=self.user)
if self.config["chat_logging"]["log_chat"]:
# get previous conversation of the user
memory = self.chat_processor.processor.prev_conv
if len(self.chat_processor.processor.prev_conv) > 0:
for idx, conv in enumerate(self.chat_processor.processor.prev_conv):
await cl.Message(
author="User", content=conv[0], type="user_message"
).send()
await cl.Message(author="AI Tutor", content=conv[1]).send()
else:
memory = []
self.chain = self.llm_tutor.qa_bot(memory=memory)
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chain", self.chain)
cl.user_session.set("chat_processor", self.chat_processor)
async def on_chat_end(self):
"""
Handle the end of the chat session by sending a goodbye message.
# TODO: Not used as of now - useful when the implementation for the conversation limiting is implemented
"""
await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
async def stream_response(self, response):
"""
Stream the response from the LLM.
Args:
response: The response from the LLM.
"""
msg = cl.Message(content="")
await msg.send()
output = {}
for chunk in response:
if 'answer' in chunk:
await msg.stream_token(chunk['answer'])
for key in chunk:
if key not in output:
output[key] = chunk[key]
else:
output[key] += chunk[key]
return output
async def main(self, message):
"""
Process and Display the Conversation.
Args:
message: The incoming chat message.
"""
chain = cl.user_session.get("chain")
llm_settings = cl.user_session.get("llm_settings", {})
view_sources = llm_settings.get("view_sources", False)
stream = (llm_settings.get("stream_response", True)) or (not self.config["llm_params"]["stream"])
processor = cl.user_session.get("chat_processor")
res = await processor.rag(message.content, chain, stream)
if stream:
res = await self.stream_response(res)
answer = res.get("answer", res.get("result"))
answer_with_sources, source_elements, sources_dict = get_sources(
res, answer, stream=stream, view_sources=view_sources
)
processor._process(message.content, answer, sources_dict)
await cl.Message(content=answer_with_sources, elements=source_elements).send()
@cl.oauth_callback
def auth_callback(
provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,
) -> Optional[cl.User]:
return default_user
chatbot = Chatbot()
cl.set_starters(chatbot.set_starters)
cl.author_rename(chatbot.rename)
cl.on_chat_start(chatbot.start)
cl.on_chat_end(chatbot.on_chat_end)
cl.on_message(chatbot.main)
cl.on_settings_update(chatbot.update_llm)