|
from ragatouille import RAGPretrainedModel |
|
from modules.vectorstore.base import VectorStoreBase |
|
from langchain_core.retrievers import BaseRetriever |
|
from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun, Callbacks |
|
from langchain_core.documents import Document |
|
from typing import Any, List, Optional, Sequence |
|
import os |
|
import json |
|
|
|
|
|
class RAGatouilleLangChainRetrieverWithScore(BaseRetriever): |
|
model: Any |
|
kwargs: dict = {} |
|
|
|
def _get_relevant_documents( |
|
self, |
|
query: str, |
|
*, |
|
run_manager: CallbackManagerForRetrieverRun, |
|
) -> List[Document]: |
|
"""Get documents relevant to a query.""" |
|
docs = self.model.search(query, **self.kwargs) |
|
return [ |
|
Document( |
|
page_content=doc["content"], |
|
metadata={**doc.get("document_metadata", {}), "score": doc["score"]}, |
|
) |
|
for doc in docs |
|
] |
|
|
|
async def _aget_relevant_documents( |
|
self, |
|
query: str, |
|
*, |
|
run_manager: CallbackManagerForRetrieverRun, |
|
) -> List[Document]: |
|
"""Get documents relevant to a query.""" |
|
docs = self.model.search(query, **self.kwargs) |
|
return [ |
|
Document( |
|
page_content=doc["content"], |
|
metadata={**doc.get("document_metadata", {}), "score": doc["score"]}, |
|
) |
|
for doc in docs |
|
] |
|
|
|
|
|
class RAGPretrainedModel(RAGPretrainedModel): |
|
""" |
|
Adding len property to RAGPretrainedModel |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._document_count = 0 |
|
|
|
def set_document_count(self, count): |
|
self._document_count = count |
|
|
|
def __len__(self): |
|
return self._document_count |
|
|
|
def as_langchain_retriever(self, **kwargs: Any) -> BaseRetriever: |
|
return RAGatouilleLangChainRetrieverWithScore(model=self, kwargs=kwargs) |
|
|
|
|
|
class ColbertVectorStore(VectorStoreBase): |
|
def __init__(self, config): |
|
self.config = config |
|
self._init_vector_db() |
|
|
|
def _init_vector_db(self): |
|
self.colbert = RAGPretrainedModel.from_pretrained( |
|
"colbert-ir/colbertv2.0", |
|
index_root=os.path.join( |
|
self.config["vectorstore"]["db_path"], |
|
"db_" + self.config["vectorstore"]["db_option"], |
|
), |
|
) |
|
|
|
def create_database(self, documents, document_names, document_metadata): |
|
index_path = self.colbert.index( |
|
index_name="new_idx", |
|
collection=documents, |
|
document_ids=document_names, |
|
document_metadatas=document_metadata, |
|
) |
|
self.colbert.set_document_count(len(document_names)) |
|
|
|
def load_database(self): |
|
path = os.path.join( |
|
os.getcwd(), |
|
self.config["vectorstore"]["db_path"], |
|
"db_" + self.config["vectorstore"]["db_option"], |
|
) |
|
self.vectorstore = RAGPretrainedModel.from_index( |
|
f"{path}/colbert/indexes/new_idx" |
|
) |
|
|
|
index_metadata = json.load( |
|
open(f"{path}/colbert/indexes/new_idx/0.metadata.json") |
|
) |
|
num_documents = index_metadata["num_passages"] |
|
self.vectorstore.set_document_count(num_documents) |
|
|
|
return self.vectorstore |
|
|
|
def as_retriever(self): |
|
return self.vectorstore.as_retriever() |
|
|
|
def __len__(self): |
|
return len(self.vectorstore) |
|
|