|
from langchain.document_loaders import PyPDFLoader, DirectoryLoader |
|
from langchain import PromptTemplate |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain.llms import CTransformers |
|
import chainlit as cl |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain_community.embeddings import OpenAIEmbeddings |
|
import yaml |
|
import logging |
|
from dotenv import load_dotenv |
|
|
|
from modules.llm_tutor import LLMTutor |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
console_handler = logging.StreamHandler() |
|
console_handler.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") |
|
console_handler.setFormatter(formatter) |
|
logger.addHandler(console_handler) |
|
|
|
|
|
log_file_path = "log_file.log" |
|
file_handler = logging.FileHandler(log_file_path) |
|
file_handler.setLevel(logging.INFO) |
|
file_handler.setFormatter(formatter) |
|
logger.addHandler(file_handler) |
|
|
|
with open("config.yml", "r") as f: |
|
config = yaml.safe_load(f) |
|
print(config) |
|
logger.info("Config file loaded") |
|
logger.info(f"Config: {config}") |
|
logger.info("Creating llm_tutor instance") |
|
llm_tutor = LLMTutor(config, logger=logger) |
|
|
|
|
|
|
|
@cl.on_chat_start |
|
async def start(): |
|
chain = llm_tutor.qa_bot() |
|
msg = cl.Message(content="Starting the bot...") |
|
await msg.send() |
|
msg.content = "Hey, What Can I Help You With?" |
|
await msg.update() |
|
|
|
cl.user_session.set("chain", chain) |
|
|
|
|
|
@cl.on_message |
|
async def main(message): |
|
chain = cl.user_session.get("chain") |
|
cb = cl.AsyncLangchainCallbackHandler( |
|
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"] |
|
) |
|
cb.answer_reached = True |
|
|
|
res = await chain.acall(message.content, callbacks=[cb]) |
|
|
|
try: |
|
answer = res["answer"] |
|
except: |
|
answer = res["result"] |
|
print(f"answer: {answer}") |
|
source_elements_dict = {} |
|
source_elements = [] |
|
found_sources = [] |
|
|
|
for idx, source in enumerate(res["source_documents"]): |
|
title = source.metadata["source"] |
|
|
|
if title not in source_elements_dict: |
|
source_elements_dict[title] = { |
|
"page_number": [source.metadata["page"]], |
|
"url": source.metadata["source"], |
|
"content": source.page_content, |
|
} |
|
|
|
else: |
|
source_elements_dict[title]["page_number"].append(source.metadata["page"]) |
|
source_elements_dict[title][ |
|
"content_" + str(source.metadata["page"]) |
|
] = source.page_content |
|
|
|
|
|
|
|
for title, source in source_elements_dict.items(): |
|
|
|
page_numbers = ", ".join([str(x) for x in source["page_number"]]) |
|
text_for_source = f"Page Number(s): {page_numbers}\nURL: {source['url']}" |
|
source_elements.append(cl.Pdf(name="File", path=title)) |
|
found_sources.append("File") |
|
|
|
|
|
|
|
|
|
|
|
|
|
if found_sources: |
|
answer += f"\nSource:{', '.join(found_sources)}" |
|
else: |
|
answer += f"\nNo source found." |
|
|
|
await cl.Message(content=answer, elements=source_elements).send() |
|
|