|
from modules.config.constants import * |
|
import chainlit as cl |
|
from langchain_core.prompts import PromptTemplate |
|
|
|
|
|
def get_sources(res, answer): |
|
source_elements = [] |
|
source_dict = {} |
|
|
|
for idx, source in enumerate(res["source_documents"]): |
|
source_metadata = source.metadata |
|
url = source_metadata["source"] |
|
score = source_metadata.get("score", "N/A") |
|
page = source_metadata.get("page", 1) |
|
|
|
lecture_tldr = source_metadata.get("tldr", "N/A") |
|
lecture_recording = source_metadata.get("lecture_recording", "N/A") |
|
suggested_readings = source_metadata.get("suggested_readings", "N/A") |
|
date = source_metadata.get("date", "N/A") |
|
|
|
source_type = source_metadata.get("source_type", "N/A") |
|
|
|
url_name = f"{url}_{page}" |
|
if url_name not in source_dict: |
|
source_dict[url_name] = { |
|
"text": source.page_content, |
|
"url": url, |
|
"score": score, |
|
"page": page, |
|
"lecture_tldr": lecture_tldr, |
|
"lecture_recording": lecture_recording, |
|
"suggested_readings": suggested_readings, |
|
"date": date, |
|
"source_type": source_type, |
|
} |
|
else: |
|
source_dict[url_name]["text"] += f"\n\n{source.page_content}" |
|
|
|
|
|
full_answer = "**Answer:**\n" |
|
full_answer += answer |
|
|
|
|
|
full_answer += "\n\n**Sources:**\n" |
|
for idx, (url_name, source_data) in enumerate(source_dict.items()): |
|
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n" |
|
|
|
name = f"Source {idx + 1} Text\n" |
|
full_answer += name |
|
source_elements.append( |
|
cl.Text(name=name, content=source_data["text"], display="side") |
|
) |
|
|
|
|
|
if source_data["url"].lower().endswith(".pdf"): |
|
name = f"Source {idx + 1} PDF\n" |
|
full_answer += name |
|
pdf_url = f"{source_data['url']}#page={source_data['page']+1}" |
|
source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side")) |
|
|
|
full_answer += "\n**Metadata:**\n" |
|
for idx, (url_name, source_data) in enumerate(source_dict.items()): |
|
full_answer += f"\nSource {idx + 1} Metadata:\n" |
|
source_elements.append( |
|
cl.Text( |
|
name=f"Source {idx + 1} Metadata", |
|
content=f"Source: {source_data['url']}\n" |
|
f"Page: {source_data['page']}\n" |
|
f"Type: {source_data['source_type']}\n" |
|
f"Date: {source_data['date']}\n" |
|
f"TL;DR: {source_data['lecture_tldr']}\n" |
|
f"Lecture Recording: {source_data['lecture_recording']}\n" |
|
f"Suggested Readings: {source_data['suggested_readings']}\n", |
|
display="side", |
|
) |
|
) |
|
|
|
return full_answer, source_elements |
|
|
|
|
|
def get_prompt(config): |
|
if config["llm_params"]["use_history"]: |
|
if config["llm_params"]["llm_loader"] == "local_llm": |
|
custom_prompt_template = tinyllama_prompt_template_with_history |
|
elif config["llm_params"]["llm_loader"] == "openai": |
|
custom_prompt_template = openai_prompt_template_with_history |
|
|
|
|
|
prompt = PromptTemplate( |
|
template=custom_prompt_template, |
|
input_variables=["context", "chat_history", "question"], |
|
) |
|
else: |
|
if config["llm_params"]["llm_loader"] == "local_llm": |
|
custom_prompt_template = tinyllama_prompt_template |
|
elif config["llm_params"]["llm_loader"] == "openai": |
|
custom_prompt_template = openai_prompt_template |
|
|
|
|
|
prompt = PromptTemplate( |
|
template=custom_prompt_template, |
|
input_variables=["context", "question"], |
|
) |
|
return prompt |
|
|