tutor_dev / code /main.py
XThomasBU
setup and format instructions added
1e2550f
raw
history blame
15.9 kB
import chainlit.data as cl_data
import asyncio
from modules.config.constants import (
LITERAL_API_KEY_LOGGING,
LITERAL_API_URL,
)
from modules.chat_processor.literal_ai import CustomLiteralDataLayer
import json
import yaml
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat.helpers import (
get_sources,
get_history_chat_resume,
get_history_setup_llm,
get_last_config,
)
import copy
from typing import Optional
from chainlit.types import ThreadDict
import time
USER_TIMEOUT = 60_000
SYSTEM = "System 🖥️"
LLM = "LLM 🧠"
AGENT = "Agent <>"
YOU = "You 😃"
ERROR = "Error 🚫"
with open("modules/config/config.yml", "r") as f:
config = yaml.safe_load(f)
async def setup_data_layer():
"""
Set up the data layer for chat logging.
"""
if config["chat_logging"]["log_chat"]:
data_layer = CustomLiteralDataLayer(
api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL
)
else:
data_layer = None
return data_layer
class Chatbot:
def __init__(self, config):
"""
Initialize the Chatbot class.
"""
self.config = config
async def _load_config(self):
"""
Load the configuration from a YAML file.
"""
with open("modules/config/config.yml", "r") as f:
return yaml.safe_load(f)
@no_type_check
async def setup_llm(self):
"""
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
#TODO: Clean this up.
"""
start_time = time.time()
llm_settings = cl.user_session.get("llm_settings", {})
(
chat_profile,
retriever_method,
memory_window,
llm_style,
generate_follow_up,
chunking_mode,
) = (
llm_settings.get("chat_model"),
llm_settings.get("retriever_method"),
llm_settings.get("memory_window"),
llm_settings.get("llm_style"),
llm_settings.get("follow_up_questions"),
llm_settings.get("chunking_mode"),
)
chain = cl.user_session.get("chain")
memory_list = cl.user_session.get(
"memory",
(
list(chain.store.values())[0].messages
if len(chain.store.values()) > 0
else []
),
)
conversation_list = get_history_setup_llm(memory_list)
old_config = copy.deepcopy(self.config)
self.config["vectorstore"]["db_option"] = retriever_method
self.config["llm_params"]["memory_window"] = memory_window
self.config["llm_params"]["llm_style"] = llm_style
self.config["llm_params"]["llm_loader"] = chat_profile
self.config["llm_params"]["generate_follow_up"] = generate_follow_up
self.config["splitter_options"]["chunking_mode"] = chunking_mode
self.llm_tutor.update_llm(
old_config, self.config
) # update only llm attributes that are changed
self.chain = self.llm_tutor.qa_bot(
memory=conversation_list,
callbacks=(
[cl.LangchainCallbackHandler()]
if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
else None
),
)
cl.user_session.set("chain", self.chain)
cl.user_session.set("llm_tutor", self.llm_tutor)
print("Time taken to setup LLM: ", time.time() - start_time)
@no_type_check
async def update_llm(self, new_settings: Dict[str, Any]):
"""
Update the LLM settings and reinitialize the LLM with the new settings.
Args:
new_settings (Dict[str, Any]): The new settings to update.
"""
cl.user_session.set("llm_settings", new_settings)
await self.inform_llm_settings()
await self.setup_llm()
async def make_llm_settings_widgets(self, config=None):
"""
Create and send the widgets for LLM settings configuration.
Args:
config: The configuration to use for setting up the widgets.
"""
config = config or self.config
await cl.ChatSettings(
[
cl.input_widget.Select(
id="chat_model",
label="Model Name (Default GPT-3)",
values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
initial_index=[
"local_llm",
"gpt-3.5-turbo-1106",
"gpt-4",
"gpt-4o-mini",
].index(config["llm_params"]["llm_loader"]),
),
cl.input_widget.Select(
id="retriever_method",
label="Retriever (Default FAISS)",
values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
config["vectorstore"]["db_option"]
),
),
cl.input_widget.Slider(
id="memory_window",
label="Memory Window (Default 3)",
initial=3,
min=0,
max=10,
step=1,
),
cl.input_widget.Switch(
id="view_sources", label="View Sources", initial=False
),
cl.input_widget.Switch(
id="stream_response",
label="Stream response",
initial=config["llm_params"]["stream"],
),
cl.input_widget.Select(
id="chunking_mode",
label="Chunking mode",
values=["fixed", "semantic"],
initial_index=1,
),
cl.input_widget.Switch(
id="follow_up_questions",
label="Generate follow up questions",
initial=False,
),
cl.input_widget.Select(
id="llm_style",
label="Type of Conversation (Default Normal)",
values=["Normal", "ELI5"],
initial_index=0,
),
]
).send()
@no_type_check
async def inform_llm_settings(self):
"""
Inform the user about the updated LLM settings and display them as a message.
"""
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
llm_tutor = cl.user_session.get("llm_tutor")
settings_dict = {
"model": llm_settings.get("chat_model"),
"retriever": llm_settings.get("retriever_method"),
"memory_window": llm_settings.get("memory_window"),
"num_docs_in_db": (
len(llm_tutor.vector_db)
if llm_tutor and hasattr(llm_tutor, "vector_db")
else 0
),
"view_sources": llm_settings.get("view_sources"),
"follow_up_questions": llm_settings.get("follow_up_questions"),
}
await cl.Message(
author=SYSTEM,
content="LLM settings have been updated. You can continue with your Query!",
elements=[
cl.Text(
name="settings",
display="side",
content=json.dumps(settings_dict, indent=4),
language="json",
),
],
).send()
async def set_starters(self):
"""
Set starter messages for the chatbot.
"""
# Return Starters only if the chat is new
try:
thread = cl_data._data_layer.get_thread(
cl.context.session.thread_id
) # see if the thread has any steps
if thread.steps or len(thread.steps) > 0:
return None
except Exception as e:
print(e)
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transformers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didn't understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
def rename(self, orig_author: str):
"""
Rename the original author to a more user-friendly name.
Args:
orig_author (str): The original author's name.
Returns:
str: The renamed author.
"""
rename_dict = {"Chatbot": "AI Tutor"}
return rename_dict.get(orig_author, orig_author)
async def start(self, config=None):
"""
Start the chatbot, initialize settings widgets,
and display and load previous conversation if chat logging is enabled.
"""
start_time = time.time()
self.config = (
await self._load_config() if config is None else config
) # Reload the configuration on chat resume
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
await self.make_llm_settings_widgets(self.config)
user = cl.user_session.get("user")
try:
self.user = {
"user_id": user.identifier,
"session_id": cl.context.session.thread_id,
}
except Exception as e:
print(e)
self.user = {
"user_id": "guest",
"session_id": cl.context.session.thread_id,
}
memory = cl.user_session.get("memory", [])
cl.user_session.set("user", self.user)
self.llm_tutor = LLMTutor(self.config, user=self.user)
self.chain = self.llm_tutor.qa_bot(
memory=memory,
callbacks=(
[cl.LangchainCallbackHandler()]
if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
else None
),
)
self.question_generator = self.llm_tutor.question_generator
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chain", self.chain)
print("Time taken to start LLM: ", time.time() - start_time)
async def stream_response(self, response):
"""
Stream the response from the LLM.
Args:
response: The response from the LLM.
"""
msg = cl.Message(content="")
await msg.send()
output = {}
for chunk in response:
if "answer" in chunk:
await msg.stream_token(chunk["answer"])
for key in chunk:
if key not in output:
output[key] = chunk[key]
else:
output[key] += chunk[key]
return output
async def main(self, message):
"""
Process and Display the Conversation.
Args:
message: The incoming chat message.
"""
start_time = time.time()
chain = cl.user_session.get("chain")
llm_settings = cl.user_session.get("llm_settings", {})
view_sources = llm_settings.get("view_sources", False)
stream = llm_settings.get("stream_response", False)
stream = False # Fix streaming
user_query_dict = {"input": message.content}
# Define the base configuration
chain_config = {
"configurable": {
"user_id": self.user["user_id"],
"conversation_id": self.user["session_id"],
"memory_window": self.config["llm_params"]["memory_window"],
}
}
if stream:
res = chain.stream(user_query=user_query_dict, config=chain_config)
res = await self.stream_response(res)
else:
res = await chain.invoke(
user_query=user_query_dict,
config=chain_config,
)
answer = res.get("answer", res.get("result"))
answer_with_sources, source_elements, sources_dict = get_sources(
res, answer, stream=stream, view_sources=view_sources
)
answer_with_sources = answer_with_sources.replace("$$", "$")
print("Time taken to process the message: ", time.time() - start_time)
actions = []
if self.config["llm_params"]["generate_follow_up"]:
start_time = time.time()
list_of_questions = self.question_generator.generate_questions(
query=user_query_dict["input"],
response=answer,
chat_history=res.get("chat_history"),
context=res.get("context"),
)
for question in list_of_questions:
actions.append(
cl.Action(
name="follow up question",
value="example_value",
description=question,
label=question,
)
)
print("Time taken to generate questions: ", time.time() - start_time)
await cl.Message(
content=answer_with_sources,
elements=source_elements,
author=LLM,
actions=actions,
metadata=self.config,
).send()
async def on_chat_resume(self, thread: ThreadDict):
thread_config = None
steps = thread["steps"]
k = self.config["llm_params"][
"memory_window"
] # on resume, alwyas use the default memory window
conversation_list = get_history_chat_resume(steps, k, SYSTEM, LLM)
thread_config = get_last_config(
steps
) # TODO: Returns None for now - which causes config to be reloaded with default values
cl.user_session.set("memory", conversation_list)
await self.start(config=thread_config)
@cl.oauth_callback
def auth_callback(
provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,
) -> Optional[cl.User]:
return default_user
async def on_follow_up(self, action: cl.Action):
message = await cl.Message(
content=action.description,
type="user_message",
author=self.user["user_id"],
).send()
await self.main(message)
chatbot = Chatbot(config=config)
async def start_app():
cl_data._data_layer = await setup_data_layer()
chatbot.literal_client = cl_data._data_layer.client if cl_data._data_layer else None
cl.set_starters(chatbot.set_starters)
cl.author_rename(chatbot.rename)
cl.on_chat_start(chatbot.start)
cl.on_chat_resume(chatbot.on_chat_resume)
cl.on_message(chatbot.main)
cl.on_settings_update(chatbot.update_llm)
cl.action_callback("follow up question")(chatbot.on_follow_up)
asyncio.run(start_app())