|
from modules.config.prompts import prompts |
|
import chainlit as cl |
|
|
|
|
|
def get_sources(res, answer, stream=True, view_sources=False): |
|
source_elements = [] |
|
source_dict = {} |
|
|
|
for idx, source in enumerate(res["context"]): |
|
source_metadata = source.metadata |
|
url = source_metadata.get("source", "N/A") |
|
score = source_metadata.get("score", "N/A") |
|
page = source_metadata.get("page", 1) |
|
|
|
lecture_tldr = source_metadata.get("tldr", "N/A") |
|
lecture_recording = source_metadata.get("lecture_recording", "N/A") |
|
suggested_readings = source_metadata.get("suggested_readings", "N/A") |
|
date = source_metadata.get("date", "N/A") |
|
|
|
source_type = source_metadata.get("source_type", "N/A") |
|
|
|
url_name = f"{url}_{page}" |
|
if url_name not in source_dict: |
|
source_dict[url_name] = { |
|
"text": source.page_content, |
|
"url": url, |
|
"score": score, |
|
"page": page, |
|
"lecture_tldr": lecture_tldr, |
|
"lecture_recording": lecture_recording, |
|
"suggested_readings": suggested_readings, |
|
"date": date, |
|
"source_type": source_type, |
|
} |
|
else: |
|
source_dict[url_name]["text"] += f"\n\n{source.page_content}" |
|
|
|
full_answer = "" |
|
|
|
if not stream: |
|
full_answer = "**Answer:**\n" |
|
full_answer += answer |
|
|
|
if view_sources: |
|
|
|
|
|
if len(source_dict) == 0: |
|
full_answer += "\n\n**No sources found.**" |
|
return full_answer, source_elements, source_dict |
|
else: |
|
full_answer += "\n\n**Sources:**\n" |
|
for idx, (url_name, source_data) in enumerate(source_dict.items()): |
|
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n" |
|
|
|
name = f"Source {idx + 1} Text\n" |
|
full_answer += name |
|
source_elements.append( |
|
cl.Text(name=name, content=source_data["text"], display="side") |
|
) |
|
|
|
|
|
if source_data["url"].lower().endswith(".pdf"): |
|
name = f"Source {idx + 1} PDF\n" |
|
full_answer += name |
|
pdf_url = f"{source_data['url']}#page={source_data['page']+1}" |
|
source_elements.append( |
|
cl.Pdf(name=name, url=pdf_url, display="side") |
|
) |
|
|
|
full_answer += "\n**Metadata:**\n" |
|
for idx, (url_name, source_data) in enumerate(source_dict.items()): |
|
full_answer += f"\nSource {idx + 1} Metadata:\n" |
|
source_elements.append( |
|
cl.Text( |
|
name=f"Source {idx + 1} Metadata", |
|
content=f"Source: {source_data['url']}\n" |
|
f"Page: {source_data['page']}\n" |
|
f"Type: {source_data['source_type']}\n" |
|
f"Date: {source_data['date']}\n" |
|
f"TL;DR: {source_data['lecture_tldr']}\n" |
|
f"Lecture Recording: {source_data['lecture_recording']}\n" |
|
f"Suggested Readings: {source_data['suggested_readings']}\n", |
|
display="side", |
|
) |
|
) |
|
|
|
return full_answer, source_elements, source_dict |
|
|
|
|
|
def get_prompt(config, prompt_type): |
|
llm_params = config["llm_params"] |
|
llm_loader = llm_params["llm_loader"] |
|
use_history = llm_params["use_history"] |
|
llm_style = llm_params["llm_style"].lower() |
|
|
|
if prompt_type == "qa": |
|
if llm_loader == "local_llm": |
|
if use_history: |
|
return prompts["tiny_llama"]["prompt_with_history"] |
|
else: |
|
return prompts["tiny_llama"]["prompt_no_history"] |
|
else: |
|
if use_history: |
|
return prompts["openai"]["prompt_with_history"][llm_style] |
|
else: |
|
return prompts["openai"]["prompt_no_history"] |
|
elif prompt_type == "rephrase": |
|
return prompts["openai"]["rephrase_prompt"] |
|
|
|
|
|
|
|
def get_history_chat_resume(steps, k, SYSTEM, LLM): |
|
conversation_list = [] |
|
count = 0 |
|
for step in reversed(steps): |
|
if step["name"] not in [SYSTEM]: |
|
if step["type"] == "user_message": |
|
conversation_list.append( |
|
{"type": "user_message", "content": step["output"]} |
|
) |
|
count += 1 |
|
elif step["type"] == "assistant_message": |
|
if step["name"] == LLM: |
|
conversation_list.append( |
|
{"type": "ai_message", "content": step["output"]} |
|
) |
|
count += 1 |
|
else: |
|
pass |
|
|
|
|
|
if count >= 2 * k: |
|
break |
|
conversation_list = conversation_list[::-1] |
|
return conversation_list |
|
|
|
|
|
def get_history_setup_llm(memory_list): |
|
conversation_list = [] |
|
for message in memory_list: |
|
message_dict = message.to_dict() if hasattr(message, "to_dict") else message |
|
|
|
|
|
message_type = ( |
|
message_dict.get("type", None) |
|
if isinstance(message_dict, dict) |
|
else getattr(message, "type", None) |
|
) |
|
|
|
|
|
message_content = ( |
|
message_dict.get("content", None) |
|
if isinstance(message_dict, dict) |
|
else getattr(message, "content", None) |
|
) |
|
|
|
if message_type in ["ai", "ai_message"]: |
|
conversation_list.append({"type": "ai_message", "content": message_content}) |
|
elif message_type in ["human", "user_message"]: |
|
conversation_list.append( |
|
{"type": "user_message", "content": message_content} |
|
) |
|
else: |
|
raise ValueError("Invalid message type") |
|
|
|
return conversation_list |
|
|
|
|
|
def get_last_config(steps): |
|
|
|
return None |
|
|