|
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
import chainlit as cl |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain_community.embeddings import OpenAIEmbeddings |
|
import yaml |
|
import logging |
|
from dotenv import load_dotenv |
|
|
|
from modules.chat.llm_tutor import LLMTutor |
|
from modules.config.constants import * |
|
from modules.chat.helpers import get_sources |
|
from modules.chat_processor.chat_processor import ChatProcessor |
|
|
|
global logger |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
|
|
console_handler = logging.StreamHandler() |
|
console_handler.setLevel(logging.INFO) |
|
console_handler.setFormatter(formatter) |
|
logger.addHandler(console_handler) |
|
|
|
|
|
|
|
@cl.set_chat_profiles |
|
async def chat_profile(): |
|
return [ |
|
|
|
|
|
|
|
|
|
cl.ChatProfile( |
|
name="gpt-3.5-turbo-1106", |
|
markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.", |
|
), |
|
cl.ChatProfile( |
|
name="gpt-4", |
|
markdown_description="Use OpenAI API for **gpt-4**.", |
|
), |
|
cl.ChatProfile( |
|
name="Llama", |
|
markdown_description="Use the local LLM: **Tiny Llama**.", |
|
), |
|
] |
|
|
|
|
|
@cl.author_rename |
|
def rename(orig_author: str): |
|
rename_dict = {"Chatbot": "AI Tutor"} |
|
return rename_dict.get(orig_author, orig_author) |
|
|
|
|
|
|
|
@cl.on_chat_start |
|
async def start(): |
|
with open("modules/config/config.yml", "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
|
|
log_directory = config["log_dir"] |
|
if not os.path.exists(log_directory): |
|
os.makedirs(log_directory) |
|
|
|
|
|
log_file_path = ( |
|
f"{log_directory}/tutor.log" |
|
) |
|
file_handler = logging.FileHandler(log_file_path, mode="w") |
|
file_handler.setLevel(logging.INFO) |
|
file_handler.setFormatter(formatter) |
|
logger.addHandler(file_handler) |
|
|
|
logger.info("Config file loaded") |
|
logger.info(f"Config: {config}") |
|
logger.info("Creating llm_tutor instance") |
|
|
|
chat_profile = cl.user_session.get("chat_profile") |
|
if chat_profile is not None: |
|
if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]: |
|
config["llm_params"]["llm_loader"] = "openai" |
|
config["llm_params"]["openai_params"]["model"] = chat_profile.lower() |
|
elif chat_profile.lower() == "llama": |
|
config["llm_params"]["llm_loader"] = "local_llm" |
|
config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH |
|
config["llm_params"]["local_llm_params"]["model_type"] = "llama" |
|
elif chat_profile.lower() == "mistral": |
|
config["llm_params"]["llm_loader"] = "local_llm" |
|
config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH |
|
config["llm_params"]["local_llm_params"]["model_type"] = "mistral" |
|
|
|
else: |
|
pass |
|
|
|
llm_tutor = LLMTutor(config, logger=logger) |
|
|
|
chain = llm_tutor.qa_bot() |
|
msg = cl.Message(content=f"Starting the bot {chat_profile}...") |
|
await msg.send() |
|
msg.content = opening_message |
|
await msg.update() |
|
|
|
tags = [chat_profile, config["vectorstore"]["db_option"]] |
|
chat_processor = ChatProcessor(config["chat_logging"]["platform"], tags=tags) |
|
cl.user_session.set("chain", chain) |
|
cl.user_session.set("counter", 0) |
|
cl.user_session.set("chat_processor", chat_processor) |
|
|
|
|
|
@cl.on_chat_end |
|
async def on_chat_end(): |
|
await cl.Message(content="Sorry, I have to go now. Goodbye!").send() |
|
|
|
|
|
@cl.on_message |
|
async def main(message): |
|
global logger |
|
user = cl.user_session.get("user") |
|
chain = cl.user_session.get("chain") |
|
|
|
counter = cl.user_session.get("counter") |
|
counter += 1 |
|
cl.user_session.set("counter", counter) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cb = cl.AsyncLangchainCallbackHandler() |
|
cb.answer_reached = True |
|
|
|
processor = cl.user_session.get("chat_processor") |
|
res = await processor.rag(message.content, chain, cb) |
|
try: |
|
answer = res["answer"] |
|
except: |
|
answer = res["result"] |
|
|
|
answer_with_sources, source_elements, sources_dict = get_sources(res, answer) |
|
processor._process(message.content, answer, sources_dict) |
|
|
|
await cl.Message(content=answer_with_sources, elements=source_elements).send() |
|
|