Farid Karimli commited on
Commit
0339679
·
1 Parent(s): 0958f93

Initial GPT4o mini PDF reader implementation

Browse files
code/modules/dataloader/pdf_readers/gpt.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+ import requests
4
+
5
+ from openai import OpenAI
6
+ from pdf2image import convert_from_path
7
+ from langchain.schema import Document
8
+
9
+
10
+ class GPTParser:
11
+ """
12
+ This class uses OpenAI's GPT-4o mini model to parse PDFs and extract text, images and equations.
13
+ It is the most advanced parser in the system and is able to handle complex formats and layouts
14
+ """
15
+
16
+ def __init__(self):
17
+ self.client = OpenAI()
18
+ self.api_key = os.getenv("OPENAI_API_KEY")
19
+ self.prompt = """
20
+ The provided documents are images of PDFs of lecture slides of deep learning material.
21
+ They contain LaTeX equations, images, and text.
22
+ The goal is to extract the text, images and equations from the slides and convert everything to markdown format. Some of the equations may be complicated.
23
+ The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$.
24
+ For images, give a description and if you can, a source. Separate each page with '---'.
25
+ Just respond with the markdown.
26
+ """
27
+
28
+ def parse(self, pdf_path):
29
+ images = convert_from_path(pdf_path)
30
+ for i, image in enumerate(images):
31
+ image.save(f'output/images/page{i}.jpg', 'JPEG')
32
+
33
+ encoded_images = [self.encode_image(
34
+ f'output/images/page{im}.jpg') for im in range(len(images))]
35
+
36
+ chunks = [encoded_images[i:i + 5] for i in range(0, len(encoded_images), 5)]
37
+
38
+ headers = {
39
+ "Content-Type": "application/json",
40
+ "Authorization": f"Bearer {self.api_key}"
41
+ }
42
+
43
+ output = ""
44
+ for chunk_num, chunk in enumerate(chunks):
45
+ print(f"Processing chunk {chunk_num + 1}/{len(chunks)})")
46
+
47
+ content = [{"type": "image_url", "image_url": {
48
+ "url": f"data:image/jpeg;base64,{image}"}} for image in chunk]
49
+
50
+ content.insert(0, {"type": "text", "text": self.prompt})
51
+
52
+ payload = {
53
+ "model": "gpt-4o-mini",
54
+ "messages": [
55
+ {
56
+ "role": "user",
57
+ "content": content
58
+ }
59
+ ],
60
+ }
61
+
62
+ response = requests.post(
63
+ "https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
64
+
65
+ resp = response.json()
66
+ print("Response", resp)
67
+
68
+ chunk_output = resp['choices'][0]['message']['content']
69
+
70
+ output += chunk_output + "\n---\n"
71
+
72
+ output = output.split("\n---\n")
73
+
74
+ documents = [
75
+ Document(
76
+ page_content=page,
77
+ metadata={"source": pdf_path, "page": i}
78
+ ) for i, page in enumerate(output)
79
+ ]
80
+ return documents
81
+
82
+ def encode_image(self, image_path):
83
+ with open(image_path, "rb") as image_file:
84
+ return base64.b64encode(image_file.read()).decode('utf-8')