Farid Karimli
commited on
Commit
·
40de40e
1
Parent(s):
71b8a7a
similarity score in response fix
Browse files- code/modules/vector_db.py +23 -3
code/modules/vector_db.py
CHANGED
@@ -5,6 +5,7 @@ from langchain.vectorstores import FAISS, Chroma
|
|
5 |
from langchain.schema.vectorstore import VectorStoreRetriever
|
6 |
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
7 |
from langchain.schema.document import Document
|
|
|
8 |
|
9 |
try:
|
10 |
from modules.embedding_model_loader import EmbeddingModelLoader
|
@@ -17,12 +18,15 @@ except:
|
|
17 |
from constants import *
|
18 |
from helpers import *
|
19 |
|
|
|
|
|
20 |
|
21 |
class VectorDBScore(VectorStoreRetriever):
|
|
|
22 |
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
|
23 |
def _get_relevant_documents(
|
24 |
-
|
25 |
-
):
|
26 |
docs_and_similarities = (
|
27 |
self.vectorstore.similarity_search_with_relevance_scores(
|
28 |
query, **self.search_kwargs
|
@@ -35,6 +39,22 @@ class VectorDBScore(VectorStoreRetriever):
|
|
35 |
docs = [doc for doc, _ in docs_and_similarities]
|
36 |
return docs
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
class VectorDB:
|
40 |
def __init__(self, config, logger=None):
|
@@ -160,7 +180,7 @@ class VectorDB:
|
|
160 |
+ self.config["embedding_options"]["model"],
|
161 |
),
|
162 |
self.embedding_model,
|
163 |
-
allow_dangerous_deserialization=True,
|
164 |
)
|
165 |
elif self.db_option == "Chroma":
|
166 |
self.vector_db = Chroma(
|
|
|
5 |
from langchain.schema.vectorstore import VectorStoreRetriever
|
6 |
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
7 |
from langchain.schema.document import Document
|
8 |
+
from langchain_core.callbacks import AsyncCallbackManagerForRetrieverRun
|
9 |
|
10 |
try:
|
11 |
from modules.embedding_model_loader import EmbeddingModelLoader
|
|
|
18 |
from constants import *
|
19 |
from helpers import *
|
20 |
|
21 |
+
from typing import List
|
22 |
+
|
23 |
|
24 |
class VectorDBScore(VectorStoreRetriever):
|
25 |
+
|
26 |
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
|
27 |
def _get_relevant_documents(
|
28 |
+
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
29 |
+
) -> List[Document]:
|
30 |
docs_and_similarities = (
|
31 |
self.vectorstore.similarity_search_with_relevance_scores(
|
32 |
query, **self.search_kwargs
|
|
|
39 |
docs = [doc for doc, _ in docs_and_similarities]
|
40 |
return docs
|
41 |
|
42 |
+
async def _aget_relevant_documents(
|
43 |
+
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
|
44 |
+
) -> List[Document]:
|
45 |
+
docs_and_similarities = (
|
46 |
+
self.vectorstore.similarity_search_with_relevance_scores(
|
47 |
+
query, **self.search_kwargs
|
48 |
+
)
|
49 |
+
)
|
50 |
+
# Make the score part of the document metadata
|
51 |
+
for doc, similarity in docs_and_similarities:
|
52 |
+
doc.metadata["score"] = similarity
|
53 |
+
|
54 |
+
docs = [doc for doc, _ in docs_and_similarities]
|
55 |
+
return docs
|
56 |
+
|
57 |
+
|
58 |
|
59 |
class VectorDB:
|
60 |
def __init__(self, config, logger=None):
|
|
|
180 |
+ self.config["embedding_options"]["model"],
|
181 |
),
|
182 |
self.embedding_model,
|
183 |
+
# allow_dangerous_deserialization=True, <- unexpected keyword argument to load_local
|
184 |
)
|
185 |
elif self.db_option == "Chroma":
|
186 |
self.vector_db = Chroma(
|