XThomasBU
commited on
Commit
·
dbe2e11
1
Parent(s):
0d2ffa9
removing debug print statements
Browse files- apps/ai_tutor/chainlit_app.py +0 -45
- apps/ai_tutor/helpers.py +0 -7
- apps/chainlit_base/chainlit_base.py +0 -39
apps/ai_tutor/chainlit_app.py
CHANGED
@@ -27,7 +27,6 @@ from helpers import get_time
|
|
27 |
import copy
|
28 |
from typing import Optional
|
29 |
from chainlit.types import ThreadDict
|
30 |
-
import time
|
31 |
import base64
|
32 |
from langchain_community.callbacks import get_openai_callback
|
33 |
from datetime import datetime, timezone
|
@@ -90,7 +89,6 @@ class Chatbot:
|
|
90 |
|
91 |
#TODO: Clean this up.
|
92 |
"""
|
93 |
-
start_time = time.time()
|
94 |
|
95 |
llm_settings = cl.user_session.get("llm_settings", {})
|
96 |
(
|
@@ -138,8 +136,6 @@ class Chatbot:
|
|
138 |
cl.user_session.set("chain", self.chain)
|
139 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
140 |
|
141 |
-
print("Time taken to setup LLM: ", time.time() - start_time)
|
142 |
-
|
143 |
@no_type_check
|
144 |
async def update_llm(self, new_settings: Dict[str, Any]):
|
145 |
"""
|
@@ -222,32 +218,9 @@ class Chatbot:
|
|
222 |
"""
|
223 |
Inform the user about the updated LLM settings and display them as a message.
|
224 |
"""
|
225 |
-
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
|
226 |
-
llm_tutor = cl.user_session.get("llm_tutor")
|
227 |
-
settings_dict = {
|
228 |
-
"model": llm_settings.get("chat_model"),
|
229 |
-
"retriever": llm_settings.get("retriever_method"),
|
230 |
-
"memory_window": llm_settings.get("memory_window"),
|
231 |
-
"num_docs_in_db": (
|
232 |
-
len(llm_tutor.vector_db)
|
233 |
-
if llm_tutor and hasattr(llm_tutor, "vector_db")
|
234 |
-
else 0
|
235 |
-
),
|
236 |
-
"view_sources": llm_settings.get("view_sources"),
|
237 |
-
"follow_up_questions": llm_settings.get("follow_up_questions"),
|
238 |
-
}
|
239 |
-
print("Settings Dict: ", settings_dict)
|
240 |
await cl.Message(
|
241 |
author=SYSTEM,
|
242 |
content="LLM settings have been updated. You can continue with your Query!",
|
243 |
-
# elements=[
|
244 |
-
# cl.Text(
|
245 |
-
# name="settings",
|
246 |
-
# display="side",
|
247 |
-
# content=json.dumps(settings_dict, indent=4),
|
248 |
-
# language="json",
|
249 |
-
# ),
|
250 |
-
# ],
|
251 |
).send()
|
252 |
|
253 |
async def set_starters(self):
|
@@ -306,8 +279,6 @@ class Chatbot:
|
|
306 |
and display and load previous conversation if chat logging is enabled.
|
307 |
"""
|
308 |
|
309 |
-
start_time = time.time()
|
310 |
-
|
311 |
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
|
312 |
|
313 |
user = cl.user_session.get("user")
|
@@ -335,8 +306,6 @@ class Chatbot:
|
|
335 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
336 |
cl.user_session.set("chain", self.chain)
|
337 |
|
338 |
-
print("Time taken to start LLM: ", time.time() - start_time)
|
339 |
-
|
340 |
async def stream_response(self, response):
|
341 |
"""
|
342 |
Stream the response from the LLM.
|
@@ -367,8 +336,6 @@ class Chatbot:
|
|
367 |
message: The incoming chat message.
|
368 |
"""
|
369 |
|
370 |
-
start_time = time.time()
|
371 |
-
|
372 |
chain = cl.user_session.get("chain")
|
373 |
token_count = 0 # initialize token count
|
374 |
if not chain:
|
@@ -386,8 +353,6 @@ class Chatbot:
|
|
386 |
user.metadata = updated_user.metadata
|
387 |
cl.user_session.set("user", user)
|
388 |
|
389 |
-
print("\n\n User Tokens Left: ", user.metadata["tokens_left"])
|
390 |
-
|
391 |
# see if user has token credits left
|
392 |
# if not, return message saying they have run out of tokens
|
393 |
if user.metadata["tokens_left"] <= 0 and "admin" not in user.metadata["role"]:
|
@@ -478,12 +443,9 @@ class Chatbot:
|
|
478 |
)
|
479 |
answer_with_sources = answer_with_sources.replace("$$", "$")
|
480 |
|
481 |
-
print("Time taken to process the message: ", time.time() - start_time)
|
482 |
-
|
483 |
actions = []
|
484 |
|
485 |
if self.config["llm_params"]["generate_follow_up"]:
|
486 |
-
start_time = time.time()
|
487 |
cb_follow_up = cl.AsyncLangchainCallbackHandler()
|
488 |
config = {
|
489 |
"callbacks": (
|
@@ -513,8 +475,6 @@ class Chatbot:
|
|
513 |
)
|
514 |
)
|
515 |
|
516 |
-
print("Time taken to generate questions: ", time.time() - start_time)
|
517 |
-
|
518 |
# # update user info with token count
|
519 |
tokens_left = await update_user_from_chainlit(user, token_count)
|
520 |
|
@@ -546,7 +506,6 @@ class Chatbot:
|
|
546 |
|
547 |
@cl.header_auth_callback
|
548 |
def header_auth_callback(headers: dict) -> Optional[cl.User]:
|
549 |
-
print("\n\n\nI am here\n\n\n")
|
550 |
# try: # TODO: Add try-except block after testing
|
551 |
# TODO: Implement to get the user information from the headers (not the cookie)
|
552 |
cookie = headers.get("cookie") # gets back a str
|
@@ -562,10 +521,6 @@ class Chatbot:
|
|
562 |
).decode()
|
563 |
decoded_user_info = json.loads(decoded_user_info)
|
564 |
|
565 |
-
print(
|
566 |
-
f"\n\n USER ROLE: {decoded_user_info['literalai_info']['metadata']['role']} \n\n"
|
567 |
-
)
|
568 |
-
|
569 |
return cl.User(
|
570 |
id=decoded_user_info["literalai_info"]["id"],
|
571 |
identifier=decoded_user_info["literalai_info"]["identifier"],
|
|
|
27 |
import copy
|
28 |
from typing import Optional
|
29 |
from chainlit.types import ThreadDict
|
|
|
30 |
import base64
|
31 |
from langchain_community.callbacks import get_openai_callback
|
32 |
from datetime import datetime, timezone
|
|
|
89 |
|
90 |
#TODO: Clean this up.
|
91 |
"""
|
|
|
92 |
|
93 |
llm_settings = cl.user_session.get("llm_settings", {})
|
94 |
(
|
|
|
136 |
cl.user_session.set("chain", self.chain)
|
137 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
138 |
|
|
|
|
|
139 |
@no_type_check
|
140 |
async def update_llm(self, new_settings: Dict[str, Any]):
|
141 |
"""
|
|
|
218 |
"""
|
219 |
Inform the user about the updated LLM settings and display them as a message.
|
220 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
await cl.Message(
|
222 |
author=SYSTEM,
|
223 |
content="LLM settings have been updated. You can continue with your Query!",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
).send()
|
225 |
|
226 |
async def set_starters(self):
|
|
|
279 |
and display and load previous conversation if chat logging is enabled.
|
280 |
"""
|
281 |
|
|
|
|
|
282 |
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
|
283 |
|
284 |
user = cl.user_session.get("user")
|
|
|
306 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
307 |
cl.user_session.set("chain", self.chain)
|
308 |
|
|
|
|
|
309 |
async def stream_response(self, response):
|
310 |
"""
|
311 |
Stream the response from the LLM.
|
|
|
336 |
message: The incoming chat message.
|
337 |
"""
|
338 |
|
|
|
|
|
339 |
chain = cl.user_session.get("chain")
|
340 |
token_count = 0 # initialize token count
|
341 |
if not chain:
|
|
|
353 |
user.metadata = updated_user.metadata
|
354 |
cl.user_session.set("user", user)
|
355 |
|
|
|
|
|
356 |
# see if user has token credits left
|
357 |
# if not, return message saying they have run out of tokens
|
358 |
if user.metadata["tokens_left"] <= 0 and "admin" not in user.metadata["role"]:
|
|
|
443 |
)
|
444 |
answer_with_sources = answer_with_sources.replace("$$", "$")
|
445 |
|
|
|
|
|
446 |
actions = []
|
447 |
|
448 |
if self.config["llm_params"]["generate_follow_up"]:
|
|
|
449 |
cb_follow_up = cl.AsyncLangchainCallbackHandler()
|
450 |
config = {
|
451 |
"callbacks": (
|
|
|
475 |
)
|
476 |
)
|
477 |
|
|
|
|
|
478 |
# # update user info with token count
|
479 |
tokens_left = await update_user_from_chainlit(user, token_count)
|
480 |
|
|
|
506 |
|
507 |
@cl.header_auth_callback
|
508 |
def header_auth_callback(headers: dict) -> Optional[cl.User]:
|
|
|
509 |
# try: # TODO: Add try-except block after testing
|
510 |
# TODO: Implement to get the user information from the headers (not the cookie)
|
511 |
cookie = headers.get("cookie") # gets back a str
|
|
|
521 |
).decode()
|
522 |
decoded_user_info = json.loads(decoded_user_info)
|
523 |
|
|
|
|
|
|
|
|
|
524 |
return cl.User(
|
525 |
id=decoded_user_info["literalai_info"]["id"],
|
526 |
identifier=decoded_user_info["literalai_info"]["identifier"],
|
apps/ai_tutor/helpers.py
CHANGED
@@ -32,9 +32,6 @@ async def check_user_cooldown(
|
|
32 |
cooldown_end_time = last_message_time + timedelta(seconds=COOLDOWN_TIME)
|
33 |
cooldown_end_time_iso = cooldown_end_time.isoformat()
|
34 |
|
35 |
-
# Debug: Print the cooldown end time
|
36 |
-
print(f"Cooldown end time (ISO): {cooldown_end_time_iso}")
|
37 |
-
|
38 |
# Check if the user is still in cooldown
|
39 |
if elapsed_time_in_seconds < COOLDOWN_TIME:
|
40 |
return True, cooldown_end_time_iso # Return in ISO 8601 format
|
@@ -81,10 +78,6 @@ async def reset_tokens_for_user(user_info, TOKENS_LEFT, REGEN_TIME):
|
|
81 |
# Ensure the new token count does not exceed max_tokens
|
82 |
new_token_count = min(current_tokens + tokens_to_regenerate, max_tokens)
|
83 |
|
84 |
-
print(
|
85 |
-
f"\n\n Adding {tokens_to_regenerate} tokens to the user, Time elapsed: {elapsed_time_in_seconds} seconds, Tokens after regeneration: {new_token_count}, Tokens before: {current_tokens} \n\n"
|
86 |
-
)
|
87 |
-
|
88 |
# Update the user's token count
|
89 |
user_info["metadata"]["tokens_left"] = new_token_count
|
90 |
|
|
|
32 |
cooldown_end_time = last_message_time + timedelta(seconds=COOLDOWN_TIME)
|
33 |
cooldown_end_time_iso = cooldown_end_time.isoformat()
|
34 |
|
|
|
|
|
|
|
35 |
# Check if the user is still in cooldown
|
36 |
if elapsed_time_in_seconds < COOLDOWN_TIME:
|
37 |
return True, cooldown_end_time_iso # Return in ISO 8601 format
|
|
|
78 |
# Ensure the new token count does not exceed max_tokens
|
79 |
new_token_count = min(current_tokens + tokens_to_regenerate, max_tokens)
|
80 |
|
|
|
|
|
|
|
|
|
81 |
# Update the user's token count
|
82 |
user_info["metadata"]["tokens_left"] = new_token_count
|
83 |
|
apps/chainlit_base/chainlit_base.py
CHANGED
@@ -8,7 +8,6 @@ from modules.chat.helpers import (
|
|
8 |
get_history_setup_llm,
|
9 |
)
|
10 |
import copy
|
11 |
-
import time
|
12 |
from langchain_community.callbacks import get_openai_callback
|
13 |
from config.config_manager import config_manager
|
14 |
|
@@ -36,7 +35,6 @@ class Chatbot:
|
|
36 |
|
37 |
#TODO: Clean this up.
|
38 |
"""
|
39 |
-
start_time = time.time()
|
40 |
|
41 |
llm_settings = cl.user_session.get("llm_settings", {})
|
42 |
(
|
@@ -84,8 +82,6 @@ class Chatbot:
|
|
84 |
cl.user_session.set("chain", self.chain)
|
85 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
86 |
|
87 |
-
print("Time taken to setup LLM: ", time.time() - start_time)
|
88 |
-
|
89 |
@no_type_check
|
90 |
async def update_llm(self, new_settings: Dict[str, Any]):
|
91 |
"""
|
@@ -168,32 +164,9 @@ class Chatbot:
|
|
168 |
"""
|
169 |
Inform the user about the updated LLM settings and display them as a message.
|
170 |
"""
|
171 |
-
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
|
172 |
-
llm_tutor = cl.user_session.get("llm_tutor")
|
173 |
-
settings_dict = {
|
174 |
-
"model": llm_settings.get("chat_model"),
|
175 |
-
"retriever": llm_settings.get("retriever_method"),
|
176 |
-
"memory_window": llm_settings.get("memory_window"),
|
177 |
-
"num_docs_in_db": (
|
178 |
-
len(llm_tutor.vector_db)
|
179 |
-
if llm_tutor and hasattr(llm_tutor, "vector_db")
|
180 |
-
else 0
|
181 |
-
),
|
182 |
-
"view_sources": llm_settings.get("view_sources"),
|
183 |
-
"follow_up_questions": llm_settings.get("follow_up_questions"),
|
184 |
-
}
|
185 |
-
print("Settings Dict: ", settings_dict)
|
186 |
await cl.Message(
|
187 |
author=SYSTEM,
|
188 |
content="LLM settings have been updated. You can continue with your Query!",
|
189 |
-
# elements=[
|
190 |
-
# cl.Text(
|
191 |
-
# name="settings",
|
192 |
-
# display="side",
|
193 |
-
# content=json.dumps(settings_dict, indent=4),
|
194 |
-
# language="json",
|
195 |
-
# ),
|
196 |
-
# ],
|
197 |
).send()
|
198 |
|
199 |
async def set_starters(self):
|
@@ -243,8 +216,6 @@ class Chatbot:
|
|
243 |
and display and load previous conversation if chat logging is enabled.
|
244 |
"""
|
245 |
|
246 |
-
start_time = time.time()
|
247 |
-
|
248 |
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
|
249 |
|
250 |
# TODO: remove self.user with cl.user_session.get("user")
|
@@ -263,8 +234,6 @@ class Chatbot:
|
|
263 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
264 |
cl.user_session.set("chain", self.chain)
|
265 |
|
266 |
-
print("Time taken to start LLM: ", time.time() - start_time)
|
267 |
-
|
268 |
async def stream_response(self, response):
|
269 |
"""
|
270 |
Stream the response from the LLM.
|
@@ -295,8 +264,6 @@ class Chatbot:
|
|
295 |
message: The incoming chat message.
|
296 |
"""
|
297 |
|
298 |
-
start_time = time.time()
|
299 |
-
|
300 |
chain = cl.user_session.get("chain")
|
301 |
token_count = 0 # initialize token count
|
302 |
if not chain:
|
@@ -342,12 +309,9 @@ class Chatbot:
|
|
342 |
)
|
343 |
answer_with_sources = answer_with_sources.replace("$$", "$")
|
344 |
|
345 |
-
print("Time taken to process the message: ", time.time() - start_time)
|
346 |
-
|
347 |
actions = []
|
348 |
|
349 |
if self.config["llm_params"]["generate_follow_up"]:
|
350 |
-
start_time = time.time()
|
351 |
cb_follow_up = cl.AsyncLangchainCallbackHandler()
|
352 |
config = {
|
353 |
"callbacks": (
|
@@ -377,9 +341,6 @@ class Chatbot:
|
|
377 |
)
|
378 |
)
|
379 |
|
380 |
-
print("Time taken to generate questions: ", time.time() - start_time)
|
381 |
-
print("Total Tokens Used: ", token_count)
|
382 |
-
|
383 |
await cl.Message(
|
384 |
content=answer_with_sources,
|
385 |
elements=source_elements,
|
|
|
8 |
get_history_setup_llm,
|
9 |
)
|
10 |
import copy
|
|
|
11 |
from langchain_community.callbacks import get_openai_callback
|
12 |
from config.config_manager import config_manager
|
13 |
|
|
|
35 |
|
36 |
#TODO: Clean this up.
|
37 |
"""
|
|
|
38 |
|
39 |
llm_settings = cl.user_session.get("llm_settings", {})
|
40 |
(
|
|
|
82 |
cl.user_session.set("chain", self.chain)
|
83 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
84 |
|
|
|
|
|
85 |
@no_type_check
|
86 |
async def update_llm(self, new_settings: Dict[str, Any]):
|
87 |
"""
|
|
|
164 |
"""
|
165 |
Inform the user about the updated LLM settings and display them as a message.
|
166 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
await cl.Message(
|
168 |
author=SYSTEM,
|
169 |
content="LLM settings have been updated. You can continue with your Query!",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
).send()
|
171 |
|
172 |
async def set_starters(self):
|
|
|
216 |
and display and load previous conversation if chat logging is enabled.
|
217 |
"""
|
218 |
|
|
|
|
|
219 |
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
|
220 |
|
221 |
# TODO: remove self.user with cl.user_session.get("user")
|
|
|
234 |
cl.user_session.set("llm_tutor", self.llm_tutor)
|
235 |
cl.user_session.set("chain", self.chain)
|
236 |
|
|
|
|
|
237 |
async def stream_response(self, response):
|
238 |
"""
|
239 |
Stream the response from the LLM.
|
|
|
264 |
message: The incoming chat message.
|
265 |
"""
|
266 |
|
|
|
|
|
267 |
chain = cl.user_session.get("chain")
|
268 |
token_count = 0 # initialize token count
|
269 |
if not chain:
|
|
|
309 |
)
|
310 |
answer_with_sources = answer_with_sources.replace("$$", "$")
|
311 |
|
|
|
|
|
312 |
actions = []
|
313 |
|
314 |
if self.config["llm_params"]["generate_follow_up"]:
|
|
|
315 |
cb_follow_up = cl.AsyncLangchainCallbackHandler()
|
316 |
config = {
|
317 |
"callbacks": (
|
|
|
341 |
)
|
342 |
)
|
343 |
|
|
|
|
|
|
|
344 |
await cl.Message(
|
345 |
content=answer_with_sources,
|
346 |
elements=source_elements,
|