XThomasBU commited on
Commit
fc2cb23
·
1 Parent(s): 8f6647c

improvements, refactored chat

Browse files
code/main.py CHANGED
@@ -45,6 +45,11 @@ class Chatbot:
45
  """From the session `llm_settings`, create new LLMConfig and LLM objects,
46
  save them in session state."""
47
 
 
 
 
 
 
48
  llm_settings = cl.user_session.get("llm_settings", {})
49
  chat_profile = llm_settings.get("chat_model")
50
  retriever_method = llm_settings.get("retriever_method")
@@ -54,16 +59,18 @@ class Chatbot:
54
 
55
  chain = cl.user_session.get("chain")
56
  memory = chain.memory
57
- self.config["vectorstore"][
58
  "db_option"
59
  ] = retriever_method # update the retriever method in the config
60
- memory.k = memory_window # set the memory window
 
 
61
 
62
- self.llm_tutor = LLMTutor(self.config)
63
  self.chain = self.llm_tutor.qa_bot(memory=memory)
64
 
65
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
66
- self.chat_processor = ChatProcessor(self.config, tags=tags)
67
 
68
  cl.user_session.set("chain", self.chain)
69
  cl.user_session.set("llm_tutor", self.llm_tutor)
@@ -103,6 +110,11 @@ class Chatbot:
103
  cl.input_widget.Switch(
104
  id="view_sources", label="View Sources", initial=False
105
  ),
 
 
 
 
 
106
  ]
107
  ).send() # type: ignore
108
 
@@ -156,14 +168,14 @@ class Chatbot:
156
 
157
  async def chat_profile(self):
158
  return [
159
- # cl.ChatProfile(
160
- # name="gpt-3.5-turbo-1106",
161
- # markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.",
162
- # ),
163
- # cl.ChatProfile(
164
- # name="gpt-4",
165
- # markdown_description="Use OpenAI API for **gpt-4**.",
166
- # ),
167
  cl.ChatProfile(
168
  name="Llama",
169
  markdown_description="Use the local LLM: **Tiny Llama**.",
@@ -181,37 +193,44 @@ class Chatbot:
181
  if chat_profile:
182
  self._configure_llm(chat_profile)
183
 
184
- self.llm_tutor = LLMTutor(self.config)
 
 
185
  self.chain = self.llm_tutor.qa_bot()
186
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
187
- self.chat_processor = ChatProcessor(self.config, tags=tags)
188
 
189
  cl.user_session.set("llm_tutor", self.llm_tutor)
190
  cl.user_session.set("chain", self.chain)
191
- cl.user_session.set("counter", 0)
192
  cl.user_session.set("chat_processor", self.chat_processor)
193
 
194
  async def on_chat_end(self):
195
  await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
196
 
197
  async def main(self, message):
198
- user = cl.user_session.get("user")
199
  chain = cl.user_session.get("chain")
200
  counter = cl.user_session.get("counter")
201
- llm_settings = cl.user_session.get("llm_settings")
 
 
 
 
 
 
202
 
203
  counter += 1
204
  cl.user_session.set("counter", counter)
205
 
206
- cb = cl.AsyncLangchainCallbackHandler() # TODO: fix streaming here
207
- cb.answer_reached = True
208
-
209
  processor = cl.user_session.get("chat_processor")
210
- res = await processor.rag(message.content, chain, cb)
 
 
 
211
  answer = res.get("answer", res.get("result"))
212
 
213
  answer_with_sources, source_elements, sources_dict = get_sources(
214
- res, answer, view_sources=llm_settings.get("view_sources")
215
  )
216
  processor._process(message.content, answer, sources_dict)
217
 
 
45
  """From the session `llm_settings`, create new LLMConfig and LLM objects,
46
  save them in session state."""
47
 
48
+ old_config = self.config.copy() # create a copy of the previous config
49
+ new_config = (
50
+ self.config.copy()
51
+ ) # create the new config as a copy of the previous config
52
+
53
  llm_settings = cl.user_session.get("llm_settings", {})
54
  chat_profile = llm_settings.get("chat_model")
55
  retriever_method = llm_settings.get("retriever_method")
 
59
 
60
  chain = cl.user_session.get("chain")
61
  memory = chain.memory
62
+ new_config["vectorstore"][
63
  "db_option"
64
  ] = retriever_method # update the retriever method in the config
65
+ new_config["llm_params"][
66
+ "memory_window"
67
+ ] = memory_window # update the memory window in the config
68
 
69
+ self.llm_tutor.update_llm(new_config)
70
  self.chain = self.llm_tutor.qa_bot(memory=memory)
71
 
72
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
73
+ self.chat_processor = ChatProcessor(self.llm_tutor, tags=tags)
74
 
75
  cl.user_session.set("chain", self.chain)
76
  cl.user_session.set("llm_tutor", self.llm_tutor)
 
110
  cl.input_widget.Switch(
111
  id="view_sources", label="View Sources", initial=False
112
  ),
113
+ # cl.input_widget.TextInput(
114
+ # id="vectorstore",
115
+ # label="temp",
116
+ # initial="None",
117
+ # ),
118
  ]
119
  ).send() # type: ignore
120
 
 
168
 
169
  async def chat_profile(self):
170
  return [
171
+ cl.ChatProfile(
172
+ name="gpt-3.5-turbo-1106",
173
+ markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.",
174
+ ),
175
+ cl.ChatProfile(
176
+ name="gpt-4",
177
+ markdown_description="Use OpenAI API for **gpt-4**.",
178
+ ),
179
  cl.ChatProfile(
180
  name="Llama",
181
  markdown_description="Use the local LLM: **Tiny Llama**.",
 
193
  if chat_profile:
194
  self._configure_llm(chat_profile)
195
 
196
+ self.llm_tutor = LLMTutor(
197
+ self.config, user={"user_id": "abc123", "session_id": "789"}
198
+ )
199
  self.chain = self.llm_tutor.qa_bot()
200
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
201
+ self.chat_processor = ChatProcessor(self.llm_tutor, tags=tags)
202
 
203
  cl.user_session.set("llm_tutor", self.llm_tutor)
204
  cl.user_session.set("chain", self.chain)
205
+ cl.user_session.set("counter", 20)
206
  cl.user_session.set("chat_processor", self.chat_processor)
207
 
208
  async def on_chat_end(self):
209
  await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
210
 
211
  async def main(self, message):
 
212
  chain = cl.user_session.get("chain")
213
  counter = cl.user_session.get("counter")
214
+ llm_settings = cl.user_session.get("llm_settings", {})
215
+ view_sources = llm_settings.get("view_sources", False)
216
+
217
+ print("HERE")
218
+ print(llm_settings)
219
+ print(view_sources)
220
+ print("\n\n")
221
 
222
  counter += 1
223
  cl.user_session.set("counter", counter)
224
 
 
 
 
225
  processor = cl.user_session.get("chat_processor")
226
+ res = await processor.rag(message.content, chain)
227
+
228
+ print(res)
229
+
230
  answer = res.get("answer", res.get("result"))
231
 
232
  answer_with_sources, source_elements, sources_dict = get_sources(
233
+ res, answer, view_sources=view_sources
234
  )
235
  processor._process(message.content, answer, sources_dict)
236
 
code/modules/chat/helpers.py CHANGED
@@ -1,13 +1,14 @@
1
  from modules.config.constants import *
2
  import chainlit as cl
3
  from langchain_core.prompts import PromptTemplate
 
4
 
5
 
6
  def get_sources(res, answer, view_sources=False):
7
  source_elements = []
8
  source_dict = {} # Dictionary to store URL elements
9
 
10
- for idx, source in enumerate(res["source_documents"]):
11
  source_metadata = source.metadata
12
  url = source_metadata.get("source", "N/A")
13
  score = source_metadata.get("score", "N/A")
@@ -43,64 +44,77 @@ def get_sources(res, answer, view_sources=False):
43
  if view_sources:
44
 
45
  # Then, display the sources
46
- full_answer += "\n\n**Sources:**\n"
47
- for idx, (url_name, source_data) in enumerate(source_dict.items()):
48
- full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
49
-
50
- name = f"Source {idx + 1} Text\n"
51
- full_answer += name
52
- source_elements.append(
53
- cl.Text(name=name, content=source_data["text"], display="side")
54
- )
55
 
56
- # Add a PDF element if the source is a PDF file
57
- if source_data["url"].lower().endswith(".pdf"):
58
- name = f"Source {idx + 1} PDF\n"
59
  full_answer += name
60
- pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
61
- source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side"))
62
-
63
- full_answer += "\n**Metadata:**\n"
64
- for idx, (url_name, source_data) in enumerate(source_dict.items()):
65
- full_answer += f"\nSource {idx + 1} Metadata:\n"
66
- source_elements.append(
67
- cl.Text(
68
- name=f"Source {idx + 1} Metadata",
69
- content=f"Source: {source_data['url']}\n"
70
- f"Page: {source_data['page']}\n"
71
- f"Type: {source_data['source_type']}\n"
72
- f"Date: {source_data['date']}\n"
73
- f"TL;DR: {source_data['lecture_tldr']}\n"
74
- f"Lecture Recording: {source_data['lecture_recording']}\n"
75
- f"Suggested Readings: {source_data['suggested_readings']}\n",
76
- display="side",
 
 
 
 
 
 
 
 
 
 
 
77
  )
78
- )
79
 
80
  return full_answer, source_elements, source_dict
81
 
82
 
83
- def get_prompt(config):
84
- if config["llm_params"]["use_history"]:
85
- if config["llm_params"]["llm_loader"] == "local_llm":
86
- custom_prompt_template = tinyllama_prompt_template_with_history
87
- elif config["llm_params"]["llm_loader"] == "openai":
88
- custom_prompt_template = openai_prompt_template_with_history
89
- # else:
90
- # custom_prompt_template = tinyllama_prompt_template_with_history # default
91
- prompt = PromptTemplate(
92
- template=custom_prompt_template,
93
- input_variables=["context", "chat_history", "question"],
94
- )
95
- else:
96
- if config["llm_params"]["llm_loader"] == "local_llm":
97
- custom_prompt_template = tinyllama_prompt_template
98
- elif config["llm_params"]["llm_loader"] == "openai":
99
- custom_prompt_template = openai_prompt_template
100
- # else:
101
- # custom_prompt_template = tinyllama_prompt_template
102
- prompt = PromptTemplate(
103
- template=custom_prompt_template,
104
- input_variables=["context", "question"],
 
 
 
105
  )
106
- return prompt
 
 
 
1
  from modules.config.constants import *
2
  import chainlit as cl
3
  from langchain_core.prompts import PromptTemplate
4
+ from langchain_core.prompts import ChatPromptTemplate
5
 
6
 
7
  def get_sources(res, answer, view_sources=False):
8
  source_elements = []
9
  source_dict = {} # Dictionary to store URL elements
10
 
11
+ for idx, source in enumerate(res["context"]):
12
  source_metadata = source.metadata
13
  url = source_metadata.get("source", "N/A")
14
  score = source_metadata.get("score", "N/A")
 
44
  if view_sources:
45
 
46
  # Then, display the sources
47
+ # check if the answer has sources
48
+ if len(source_dict) == 0:
49
+ full_answer += "\n\n**No sources found.**"
50
+ return full_answer, source_elements, source_dict
51
+ else:
52
+ full_answer += "\n\n**Sources:**\n"
53
+ for idx, (url_name, source_data) in enumerate(source_dict.items()):
54
+
55
+ full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
56
 
57
+ name = f"Source {idx + 1} Text\n"
 
 
58
  full_answer += name
59
+ source_elements.append(
60
+ cl.Text(name=name, content=source_data["text"], display="side")
61
+ )
62
+
63
+ # Add a PDF element if the source is a PDF file
64
+ if source_data["url"].lower().endswith(".pdf"):
65
+ name = f"Source {idx + 1} PDF\n"
66
+ full_answer += name
67
+ pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
68
+ source_elements.append(
69
+ cl.Pdf(name=name, url=pdf_url, display="side")
70
+ )
71
+
72
+ full_answer += "\n**Metadata:**\n"
73
+ for idx, (url_name, source_data) in enumerate(source_dict.items()):
74
+ full_answer += f"\nSource {idx + 1} Metadata:\n"
75
+ source_elements.append(
76
+ cl.Text(
77
+ name=f"Source {idx + 1} Metadata",
78
+ content=f"Source: {source_data['url']}\n"
79
+ f"Page: {source_data['page']}\n"
80
+ f"Type: {source_data['source_type']}\n"
81
+ f"Date: {source_data['date']}\n"
82
+ f"TL;DR: {source_data['lecture_tldr']}\n"
83
+ f"Lecture Recording: {source_data['lecture_recording']}\n"
84
+ f"Suggested Readings: {source_data['suggested_readings']}\n",
85
+ display="side",
86
+ )
87
  )
 
88
 
89
  return full_answer, source_elements, source_dict
90
 
91
 
92
+ def get_prompt(config, prompt_type):
93
+ llm_params = config["llm_params"]
94
+ llm_loader = llm_params["llm_loader"]
95
+ use_history = llm_params["use_history"]
96
+
97
+ if prompt_type == "qa":
98
+ if llm_loader == "openai":
99
+ return (
100
+ OPENAI_PROMPT_WITH_HISTORY if use_history else OPENAI_PROMPT_NO_HISTORY
101
+ )
102
+ elif (
103
+ llm_loader == "local_llm"
104
+ and llm_params.get("local_llm_params") == "tiny-llama"
105
+ ):
106
+ return (
107
+ TINYLLAMA_PROMPT_TEMPLATE_WITH_HISTORY
108
+ if use_history
109
+ else TINYLLAMA_PROMPT_TEMPLATE_NO_HISTORY
110
+ )
111
+ elif prompt_type == "rephrase":
112
+ prompt = ChatPromptTemplate.from_messages(
113
+ [
114
+ ("system", OPENAI_REPHRASE_PROMPT),
115
+ ("human", "{question}, {chat_history}"),
116
+ ]
117
  )
118
+ return OPENAI_REPHRASE_PROMPT
119
+
120
+ return None
code/modules/chat/langchain/langchain_rag.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import ChatPromptTemplate
2
+
3
+ from modules.chat.langchain.utils import *
4
+
5
+
6
+ class CustomConversationalRetrievalChain:
7
+ def __init__(self, llm, memory, retriever, qa_prompt: str, rephrase_prompt: str):
8
+ """
9
+ Initialize the CustomConversationalRetrievalChain class.
10
+
11
+ Args:
12
+ llm (LanguageModelLike): The language model instance.
13
+ memory (BaseChatMessageHistory): The chat message history instance.
14
+ retriever (BaseRetriever): The retriever instance.
15
+ qa_prompt (str): The QA prompt string.
16
+ rephrase_prompt (str): The rephrase prompt string.
17
+ """
18
+ self.llm = llm
19
+ self.memory = memory
20
+ self.retriever = retriever
21
+ self.qa_prompt = qa_prompt
22
+ self.rephrase_prompt = rephrase_prompt
23
+ self.store = {}
24
+
25
+ # Contextualize question prompt
26
+ contextualize_q_system_prompt = rephrase_prompt or (
27
+ "Given a chat history and the latest user question "
28
+ "which might reference context in the chat history, "
29
+ "formulate a standalone question which can be understood "
30
+ "without the chat history. Do NOT answer the question, just "
31
+ "reformulate it if needed and otherwise return it as is."
32
+ )
33
+ self.contextualize_q_prompt = ChatPromptTemplate.from_messages(
34
+ [
35
+ ("system", contextualize_q_system_prompt),
36
+ MessagesPlaceholder("chat_history"),
37
+ ("human", "{input}"),
38
+ ]
39
+ )
40
+
41
+ # History-aware retriever
42
+ self.history_aware_retriever = create_history_aware_retriever(
43
+ self.llm, self.retriever, self.contextualize_q_prompt
44
+ )
45
+
46
+ # Answer question prompt
47
+ qa_system_prompt = qa_prompt or (
48
+ "You are an assistant for question-answering tasks. Use "
49
+ "the following pieces of retrieved context to answer the "
50
+ "question. If you don't know the answer, just say that you "
51
+ "don't know. Use three sentences maximum and keep the answer "
52
+ "concise."
53
+ "\n\n"
54
+ "{context}"
55
+ )
56
+ self.qa_prompt_template = ChatPromptTemplate.from_messages(
57
+ [
58
+ ("system", qa_system_prompt),
59
+ MessagesPlaceholder("chat_history"),
60
+ ("human", "{input}"),
61
+ ]
62
+ )
63
+
64
+ # Question-answer chain
65
+ self.question_answer_chain = create_stuff_documents_chain(
66
+ self.llm, self.qa_prompt_template
67
+ )
68
+
69
+ # Final retrieval chain
70
+ self.rag_chain = create_retrieval_chain(
71
+ self.history_aware_retriever, self.question_answer_chain
72
+ )
73
+
74
+ self.rag_chain = CustomRunnableWithHistory(
75
+ self.rag_chain,
76
+ get_session_history=self.get_session_history,
77
+ input_messages_key="input",
78
+ history_messages_key="chat_history",
79
+ output_messages_key="answer",
80
+ history_factory_config=[
81
+ ConfigurableFieldSpec(
82
+ id="user_id",
83
+ annotation=str,
84
+ name="User ID",
85
+ description="Unique identifier for the user.",
86
+ default="",
87
+ is_shared=True,
88
+ ),
89
+ ConfigurableFieldSpec(
90
+ id="conversation_id",
91
+ annotation=str,
92
+ name="Conversation ID",
93
+ description="Unique identifier for the conversation.",
94
+ default="",
95
+ is_shared=True,
96
+ ),
97
+ ConfigurableFieldSpec(
98
+ id="memory_window",
99
+ annotation=int,
100
+ name="Number of Conversations",
101
+ description="Number of conversations to consider for context.",
102
+ default=1,
103
+ is_shared=True,
104
+ ),
105
+ ],
106
+ )
107
+
108
+ def get_session_history(
109
+ self, user_id: str, conversation_id: str, memory_window: int
110
+ ) -> BaseChatMessageHistory:
111
+ """
112
+ Get the session history for a user and conversation.
113
+
114
+ Args:
115
+ user_id (str): The user identifier.
116
+ conversation_id (str): The conversation identifier.
117
+ memory_window (int): The number of conversations to consider for context.
118
+
119
+ Returns:
120
+ BaseChatMessageHistory: The chat message history.
121
+ """
122
+ if (user_id, conversation_id) not in self.store:
123
+ self.store[(user_id, conversation_id)] = InMemoryHistory()
124
+ return self.store[(user_id, conversation_id)]
125
+
126
+ def invoke(self, user_query, config):
127
+ """
128
+ Invoke the chain.
129
+
130
+ Args:
131
+ kwargs: The input variables.
132
+
133
+ Returns:
134
+ dict: The output variables.
135
+ """
136
+ print(user_query, config)
137
+ return self.rag_chain.invoke(user_query, config)
code/modules/chat/langchain/utils.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Union, Tuple, Optional
2
+ from langchain_core.messages import (
3
+ BaseMessage,
4
+ AIMessage,
5
+ FunctionMessage,
6
+ HumanMessage,
7
+ )
8
+
9
+ from langchain_core.prompts.base import BasePromptTemplate, format_document
10
+ from langchain_core.prompts.chat import MessagesPlaceholder
11
+ from langchain_core.output_parsers import StrOutputParser
12
+ from langchain_core.output_parsers.base import BaseOutputParser
13
+ from langchain_core.retrievers import BaseRetriever, RetrieverOutput
14
+ from langchain_core.language_models import LanguageModelLike
15
+ from langchain_core.runnables import Runnable, RunnableBranch, RunnablePassthrough
16
+ from langchain_core.runnables.history import RunnableWithMessageHistory
17
+ from langchain_core.runnables.utils import ConfigurableFieldSpec
18
+ from langchain_core.chat_history import BaseChatMessageHistory
19
+ from langchain_core.pydantic_v1 import BaseModel, Field
20
+ from langchain.chains.combine_documents.base import (
21
+ DEFAULT_DOCUMENT_PROMPT,
22
+ DEFAULT_DOCUMENT_SEPARATOR,
23
+ DOCUMENTS_KEY,
24
+ BaseCombineDocumentsChain,
25
+ _validate_prompt,
26
+ )
27
+ from langchain.chains.llm import LLMChain
28
+ from langchain_core.callbacks import Callbacks
29
+ from langchain_core.documents import Document
30
+
31
+
32
+ CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
33
+
34
+ from langchain_core.runnables.config import RunnableConfig
35
+ from langchain_core.messages import BaseMessage
36
+
37
+
38
+ class CustomRunnableWithHistory(RunnableWithMessageHistory):
39
+ def _enter_history(self, input: Any, config: RunnableConfig) -> List[BaseMessage]:
40
+ """
41
+ Get the last k conversations from the message history.
42
+
43
+ Args:
44
+ input (Any): The input data.
45
+ config (RunnableConfig): The runnable configuration.
46
+
47
+ Returns:
48
+ List[BaseMessage]: The last k conversations.
49
+ """
50
+ hist: BaseChatMessageHistory = config["configurable"]["message_history"]
51
+ messages = hist.messages.copy()
52
+
53
+ if not self.history_messages_key:
54
+ # return all messages
55
+ messages += self._get_input_messages(input)
56
+
57
+ # return last k conversations
58
+ if config["configurable"]["memory_window"] == 0: # if k is 0, return empty list
59
+ messages = []
60
+ else:
61
+ messages = messages[-2 * config["configurable"]["memory_window"] :]
62
+ return messages
63
+
64
+
65
+ def _get_chat_history(chat_history: List[CHAT_TURN_TYPE], n: int = None) -> str:
66
+ """
67
+ Convert chat history to a formatted string.
68
+
69
+ Args:
70
+ chat_history (List[CHAT_TURN_TYPE]): The chat history.
71
+
72
+ Returns:
73
+ str: The formatted chat history.
74
+ """
75
+ _ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
76
+ buffer = ""
77
+ if n is not None:
78
+ # Calculate the number of turns to take (2 turns per pair)
79
+ turns_to_take = n * 2
80
+ chat_history = chat_history[-turns_to_take:]
81
+ for dialogue_turn in chat_history:
82
+ if isinstance(dialogue_turn, BaseMessage):
83
+ role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
84
+ buffer += f"\n{role_prefix}{dialogue_turn.content}"
85
+ elif isinstance(dialogue_turn, tuple):
86
+ human = "Student: " + dialogue_turn[0]
87
+ ai = "AI Tutor: " + dialogue_turn[1]
88
+ buffer += "\n" + "\n".join([human, ai])
89
+ else:
90
+ raise ValueError(
91
+ f"Unsupported chat history format: {type(dialogue_turn)}."
92
+ f" Full chat history: {chat_history} "
93
+ )
94
+ return buffer
95
+
96
+
97
+ class InMemoryHistory(BaseChatMessageHistory, BaseModel):
98
+ """In-memory implementation of chat message history."""
99
+
100
+ messages: List[BaseMessage] = Field(default_factory=list)
101
+
102
+ def add_messages(self, messages: List[BaseMessage]) -> None:
103
+ """Add a list of messages to the store."""
104
+ self.messages.extend(messages)
105
+
106
+ def clear(self) -> None:
107
+ """Clear the message history."""
108
+ self.messages = []
109
+
110
+ def __len__(self) -> int:
111
+ """Return the number of messages."""
112
+ return len(self.messages)
113
+
114
+ def get_last_n_conversations(self, n: int) -> "InMemoryHistory":
115
+ """Return a new InMemoryHistory object with the last n conversations from the message history.
116
+
117
+ Args:
118
+ n (int): The number of last conversations to return. If 0, return an empty history.
119
+
120
+ Returns:
121
+ InMemoryHistory: A new InMemoryHistory object containing the last n conversations.
122
+ """
123
+ if n == 0:
124
+ return InMemoryHistory()
125
+ # Each conversation consists of a pair of messages (human + AI)
126
+ num_messages = n * 2
127
+ last_messages = self.messages[-num_messages:]
128
+ return InMemoryHistory(messages=last_messages)
129
+
130
+
131
+ def create_history_aware_retriever(
132
+ llm: LanguageModelLike,
133
+ retriever: BaseRetriever,
134
+ prompt: BasePromptTemplate,
135
+ ) -> Runnable[Dict[str, Any], RetrieverOutput]:
136
+ """Create a chain that takes conversation history and returns documents."""
137
+ if "input" not in prompt.input_variables:
138
+ raise ValueError(
139
+ "Expected `input` to be a prompt variable, "
140
+ f"but got {prompt.input_variables}"
141
+ )
142
+
143
+ retrieve_documents = RunnableBranch(
144
+ (
145
+ lambda x: not x["chat_history"],
146
+ (lambda x: x["input"]) | retriever,
147
+ ),
148
+ prompt | llm | StrOutputParser() | retriever,
149
+ ).with_config(run_name="chat_retriever_chain")
150
+
151
+ return retrieve_documents
152
+
153
+
154
+ def create_stuff_documents_chain(
155
+ llm: LanguageModelLike,
156
+ prompt: BasePromptTemplate,
157
+ output_parser: Optional[BaseOutputParser] = None,
158
+ document_prompt: Optional[BasePromptTemplate] = None,
159
+ document_separator: str = DEFAULT_DOCUMENT_SEPARATOR,
160
+ ) -> Runnable[Dict[str, Any], Any]:
161
+ """Create a chain for passing a list of Documents to a model."""
162
+ _validate_prompt(prompt)
163
+ _document_prompt = document_prompt or DEFAULT_DOCUMENT_PROMPT
164
+ _output_parser = output_parser or StrOutputParser()
165
+
166
+ def format_docs(inputs: dict) -> str:
167
+ return document_separator.join(
168
+ format_document(doc, _document_prompt) for doc in inputs[DOCUMENTS_KEY]
169
+ )
170
+
171
+ return (
172
+ RunnablePassthrough.assign(**{DOCUMENTS_KEY: format_docs}).with_config(
173
+ run_name="format_inputs"
174
+ )
175
+ | prompt
176
+ | llm
177
+ | _output_parser
178
+ ).with_config(run_name="stuff_documents_chain")
179
+
180
+
181
+ def create_retrieval_chain(
182
+ retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]],
183
+ combine_docs_chain: Runnable[Dict[str, Any], str],
184
+ ) -> Runnable:
185
+ """Create retrieval chain that retrieves documents and then passes them on."""
186
+ if not isinstance(retriever, BaseRetriever):
187
+ retrieval_docs = retriever
188
+ else:
189
+ retrieval_docs = (lambda x: x["input"]) | retriever
190
+
191
+ retrieval_chain = (
192
+ RunnablePassthrough.assign(
193
+ context=retrieval_docs.with_config(run_name="retrieve_documents"),
194
+ ).assign(answer=combine_docs_chain)
195
+ ).with_config(run_name="retrieval_chain")
196
+
197
+ return retrieval_chain
code/modules/chat/llm_tutor.py CHANGED
@@ -1,216 +1,140 @@
1
- from langchain.chains import RetrievalQA, ConversationalRetrievalChain
2
- from langchain.memory import (
3
- ConversationBufferWindowMemory,
4
- ConversationSummaryBufferMemory,
5
- )
6
- from langchain.chains.conversational_retrieval.prompts import QA_PROMPT
7
- import os
8
- from modules.config.constants import *
9
  from modules.chat.helpers import get_prompt
10
  from modules.chat.chat_model_loader import ChatModelLoader
11
  from modules.vectorstore.store_manager import VectorStoreManager
12
-
13
  from modules.retriever.retriever import Retriever
14
-
15
- from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
16
- from langchain_core.callbacks.manager import AsyncCallbackManagerForChainRun
17
- import inspect
18
- from langchain.chains.conversational_retrieval.base import _get_chat_history
19
- from langchain_core.messages import BaseMessage
20
-
21
- CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
22
-
23
- from langchain_core.output_parsers import StrOutputParser
24
- from langchain_core.prompts import ChatPromptTemplate
25
- from langchain_community.chat_models import ChatOpenAI
26
-
27
-
28
- class CustomConversationalRetrievalChain(ConversationalRetrievalChain):
29
-
30
- def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
31
- _ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
32
- buffer = ""
33
- for dialogue_turn in chat_history:
34
- if isinstance(dialogue_turn, BaseMessage):
35
- role_prefix = _ROLE_MAP.get(
36
- dialogue_turn.type, f"{dialogue_turn.type}: "
37
- )
38
- buffer += f"\n{role_prefix}{dialogue_turn.content}"
39
- elif isinstance(dialogue_turn, tuple):
40
- human = "Student: " + dialogue_turn[0]
41
- ai = "AI Tutor: " + dialogue_turn[1]
42
- buffer += "\n" + "\n".join([human, ai])
43
- else:
44
- raise ValueError(
45
- f"Unsupported chat history format: {type(dialogue_turn)}."
46
- f" Full chat history: {chat_history} "
47
- )
48
- return buffer
49
-
50
- async def _acall(
51
- self,
52
- inputs: Dict[str, Any],
53
- run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
54
- ) -> Dict[str, Any]:
55
- _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
56
- question = inputs["question"]
57
- get_chat_history = self._get_chat_history
58
- chat_history_str = get_chat_history(inputs["chat_history"])
59
- if chat_history_str:
60
- # callbacks = _run_manager.get_child()
61
- # new_question = await self.question_generator.arun(
62
- # question=question, chat_history=chat_history_str, callbacks=callbacks
63
- # )
64
- system = (
65
- "You are someone that rephrases statements. Rephrase the student's question to add context from their chat history if relevant, ensuring it remains from the student's point of view. "
66
- "Incorporate relevant details from the chat history to make the question clearer and more specific."
67
- "Do not change the meaning of the original statement, and maintain the student's tone and perspective. "
68
- "If the question is conversational and doesn't require context, do not rephrase it. "
69
- "Example: If the student previously asked about backpropagation in the context of deep learning and now asks 'what is it', rephrase to 'What is backprogatation.'. "
70
- "Example: Do not rephrase if the user is asking something specific like 'cool, suggest a project with transformers to use as my final project'"
71
- "Chat history: \n{chat_history_str}\n"
72
- "Rephrase the following question only if necessary: '{question}'"
73
- )
74
-
75
- prompt = ChatPromptTemplate.from_messages(
76
- [
77
- ("system", system),
78
- ("human", "{question}, {chat_history_str}"),
79
- ]
80
- )
81
- llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
82
- step_back = prompt | llm | StrOutputParser()
83
- new_question = step_back.invoke(
84
- {"question": question, "chat_history_str": chat_history_str}
85
- )
86
- else:
87
- new_question = question
88
- accepts_run_manager = (
89
- "run_manager" in inspect.signature(self._aget_docs).parameters
90
- )
91
- if accepts_run_manager:
92
- docs = await self._aget_docs(new_question, inputs, run_manager=_run_manager)
93
- else:
94
- docs = await self._aget_docs(new_question, inputs) # type: ignore[call-arg]
95
-
96
- output: Dict[str, Any] = {}
97
- output["original_question"] = question
98
- if self.response_if_no_docs_found is not None and len(docs) == 0:
99
- output[self.output_key] = self.response_if_no_docs_found
100
- else:
101
- new_inputs = inputs.copy()
102
- if self.rephrase_question:
103
- new_inputs["question"] = new_question
104
- new_inputs["chat_history"] = chat_history_str
105
-
106
- # Prepare the final prompt with metadata
107
- context = "\n\n".join(
108
- [
109
- f"Context {idx+1}: \n(Document content: {doc.page_content}\nMetadata: (source_file: {doc.metadata['source'] if 'source' in doc.metadata else 'unknown'}))"
110
- for idx, doc in enumerate(docs)
111
- ]
112
- )
113
- final_prompt = (
114
- "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance."
115
- "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally. "
116
- "Use chat history and context as guides but avoid repeating past responses. Provide links from the source_file metadata. Use the source context that is most relevent."
117
- "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n\n"
118
- f"Chat History:\n{chat_history_str}\n\n"
119
- f"Context:\n{context}\n\n"
120
- "Answer the student's question below in a friendly, concise, and engaging manner. Use the context and history only if relevant, otherwise, engage in a free-flowing conversation.\n"
121
- f"Student: {question}\n"
122
- "AI Tutor:"
123
- )
124
-
125
- # new_inputs["input"] = final_prompt
126
- new_inputs["question"] = final_prompt
127
- # output["final_prompt"] = final_prompt
128
-
129
- answer = await self.combine_docs_chain.arun(
130
- input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
131
- )
132
- output[self.output_key] = answer
133
-
134
- if self.return_source_documents:
135
- output["source_documents"] = docs
136
- output["rephrased_question"] = new_question
137
- return output
138
 
139
 
140
  class LLMTutor:
141
- def __init__(self, config, logger=None):
 
 
 
 
 
 
 
 
142
  self.config = config
143
  self.llm = self.load_llm()
 
144
  self.logger = logger
145
  self.vector_db = VectorStoreManager(config, logger=self.logger)
146
  if self.config["vectorstore"]["embedd_files"]:
147
  self.vector_db.create_database()
148
  self.vector_db.save_database()
149
 
150
- def set_custom_prompt(self):
151
  """
152
- Prompt template for QA retrieval for each vectorstore
 
 
 
153
  """
154
- prompt = get_prompt(self.config)
155
- # prompt = QA_PROMPT
 
 
 
156
 
157
- return prompt
 
 
 
 
 
 
158
 
159
- # Retrieval QA Chain
160
- def retrieval_qa_chain(self, llm, prompt, db, memory=None):
 
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  retriever = Retriever(self.config)._return_retriever(db)
163
 
164
  if self.config["llm_params"]["use_history"]:
165
- if memory is None:
166
- memory = ConversationBufferWindowMemory(
167
- k=self.config["llm_params"]["memory_window"],
168
- memory_key="chat_history",
169
- return_messages=True,
170
- output_key="answer",
171
- )
172
- qa_chain = CustomConversationalRetrievalChain.from_llm(
173
  llm=llm,
174
- chain_type="stuff",
175
- retriever=retriever,
176
- return_source_documents=True,
177
  memory=memory,
178
- combine_docs_chain_kwargs={"prompt": prompt},
179
- response_if_no_docs_found="No context found",
180
- )
181
- else:
182
- qa_chain = RetrievalQA.from_chain_type(
183
- llm=llm,
184
- chain_type="stuff",
185
  retriever=retriever,
186
- return_source_documents=True,
187
- chain_type_kwargs={"prompt": prompt},
188
  )
189
  return qa_chain
190
 
191
- # Loading the model
192
  def load_llm(self):
 
 
 
 
 
 
193
  chat_model_loader = ChatModelLoader(self.config)
194
  llm = chat_model_loader.load_chat_model()
195
  return llm
196
 
197
- # QA Model Function
198
- def qa_bot(self, memory=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  db = self.vector_db.load_database()
200
  # sanity check to see if there are any documents in the database
201
  if len(db) == 0:
202
  raise ValueError(
203
  "No documents in the database. Populate the database first."
204
  )
205
- qa_prompt = self.set_custom_prompt()
206
- qa = self.retrieval_qa_chain(
207
- self.llm, qa_prompt, db, memory
208
- ) # TODO: PROMPT is overwritten in CustomConversationalRetrievalChain
209
 
210
  return qa
211
 
212
- # output function
213
  def final_result(query):
 
 
 
 
 
 
 
 
 
214
  qa_result = qa_bot()
215
  response = qa_result({"query": query})
216
  return response
 
 
 
 
 
 
 
 
 
1
  from modules.chat.helpers import get_prompt
2
  from modules.chat.chat_model_loader import ChatModelLoader
3
  from modules.vectorstore.store_manager import VectorStoreManager
 
4
  from modules.retriever.retriever import Retriever
5
+ from modules.chat.langchain.langchain_rag import CustomConversationalRetrievalChain
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
 
8
  class LLMTutor:
9
+ def __init__(self, config, user, logger=None):
10
+ """
11
+ Initialize the LLMTutor class.
12
+
13
+ Args:
14
+ config (dict): Configuration dictionary.
15
+ user (str): User identifier.
16
+ logger (Logger, optional): Logger instance. Defaults to None.
17
+ """
18
  self.config = config
19
  self.llm = self.load_llm()
20
+ self.user = user
21
  self.logger = logger
22
  self.vector_db = VectorStoreManager(config, logger=self.logger)
23
  if self.config["vectorstore"]["embedd_files"]:
24
  self.vector_db.create_database()
25
  self.vector_db.save_database()
26
 
27
+ def update_llm(self, new_config):
28
  """
29
+ Update the LLM and VectorStoreManager based on new configuration.
30
+
31
+ Args:
32
+ new_config (dict): New configuration dictionary.
33
  """
34
+ changes = self.get_config_changes(self.config, new_config)
35
+ self.config = new_config
36
+
37
+ if "chat_model" in changes:
38
+ self.llm = self.load_llm() # Reinitialize LLM if chat_model changes
39
 
40
+ if "vectorstore" in changes:
41
+ self.vector_db = VectorStoreManager(
42
+ self.config, logger=self.logger
43
+ ) # Reinitialize VectorStoreManager if vectorstore changes
44
+ if self.config["vectorstore"]["embedd_files"]:
45
+ self.vector_db.create_database()
46
+ self.vector_db.save_database()
47
 
48
+ def get_config_changes(self, old_config, new_config):
49
+ """
50
+ Get the changes between the old and new configuration.
51
 
52
+ Args:
53
+ old_config (dict): Old configuration dictionary.
54
+ new_config (dict): New configuration dictionary.
55
+
56
+ Returns:
57
+ dict: Dictionary containing the changes.
58
+ """
59
+ changes = {}
60
+ for key in new_config:
61
+ if old_config.get(key) != new_config[key]:
62
+ changes[key] = (old_config.get(key), new_config[key])
63
+ return changes
64
+
65
+ def retrieval_qa_chain(self, llm, qa_prompt, rephrase_prompt, db, memory=None):
66
+ """
67
+ Create a Retrieval QA Chain.
68
+
69
+ Args:
70
+ llm (LLM): The language model instance.
71
+ qa_prompt (str): The QA prompt string.
72
+ rephrase_prompt (str): The rephrase prompt string.
73
+ db (VectorStore): The vector store instance.
74
+ memory (Memory, optional): Memory instance. Defaults to None.
75
+
76
+ Returns:
77
+ Chain: The retrieval QA chain instance.
78
+ """
79
  retriever = Retriever(self.config)._return_retriever(db)
80
 
81
  if self.config["llm_params"]["use_history"]:
82
+ qa_chain = CustomConversationalRetrievalChain(
 
 
 
 
 
 
 
83
  llm=llm,
 
 
 
84
  memory=memory,
 
 
 
 
 
 
 
85
  retriever=retriever,
86
+ qa_prompt=qa_prompt,
87
+ rephrase_prompt=rephrase_prompt,
88
  )
89
  return qa_chain
90
 
 
91
  def load_llm(self):
92
+ """
93
+ Load the language model.
94
+
95
+ Returns:
96
+ LLM: The loaded language model instance.
97
+ """
98
  chat_model_loader = ChatModelLoader(self.config)
99
  llm = chat_model_loader.load_chat_model()
100
  return llm
101
 
102
+ def qa_bot(self, memory=None, qa_prompt=None, rephrase_prompt=None):
103
+ """
104
+ Create a QA bot instance.
105
+
106
+ Args:
107
+ memory (Memory, optional): Memory instance. Defaults to None.
108
+ qa_prompt (str, optional): QA prompt string. Defaults to None.
109
+ rephrase_prompt (str, optional): Rephrase prompt string. Defaults to None.
110
+
111
+ Returns:
112
+ Chain: The QA bot chain instance.
113
+ """
114
+ if qa_prompt is None:
115
+ qa_prompt = get_prompt(self.config, "qa")
116
+ if rephrase_prompt is None:
117
+ rephrase_prompt = get_prompt(self.config, "rephrase")
118
  db = self.vector_db.load_database()
119
  # sanity check to see if there are any documents in the database
120
  if len(db) == 0:
121
  raise ValueError(
122
  "No documents in the database. Populate the database first."
123
  )
124
+ qa = self.retrieval_qa_chain(self.llm, qa_prompt, rephrase_prompt, db, memory)
 
 
 
125
 
126
  return qa
127
 
 
128
  def final_result(query):
129
+ """
130
+ Get the final result for a given query.
131
+
132
+ Args:
133
+ query (str): The query string.
134
+
135
+ Returns:
136
+ str: The response string.
137
+ """
138
  qa_result = qa_bot()
139
  response = qa_result({"query": query})
140
  return response
code/modules/chat_processor/chat_processor.py CHANGED
@@ -2,13 +2,25 @@ from modules.chat_processor.literal_ai import LiteralaiChatProcessor
2
 
3
 
4
  class ChatProcessor:
5
- def __init__(self, config, tags=None):
6
- self.chat_processor_type = config["chat_logging"]["platform"]
7
- self.logging = config["chat_logging"]["log_chat"]
8
- self.tags = tags
 
 
 
 
 
 
9
  if self.logging:
10
  self._init_processor()
11
 
 
 
 
 
 
 
12
  def _init_processor(self):
13
  if self.chat_processor_type == "literalai":
14
  self.processor = LiteralaiChatProcessor(self.tags)
@@ -23,8 +35,21 @@ class ChatProcessor:
23
  else:
24
  pass
25
 
26
- async def rag(self, user_query: str, chain, cb):
 
 
 
 
 
 
 
 
 
 
 
27
  if self.logging:
28
- return await self.processor.rag(user_query, chain, cb)
 
 
29
  else:
30
- return await chain.acall(user_query, callbacks=[cb])
 
2
 
3
 
4
  class ChatProcessor:
5
+ def __init__(self, llm_tutor, tags=None):
6
+ self.llm_tutor = llm_tutor
7
+ self.config = self.llm_tutor.config
8
+ self.chat_processor_type = self.config["chat_logging"]["platform"]
9
+ self.logging = self.config["chat_logging"]["log_chat"]
10
+ self.user = self.llm_tutor.user
11
+ if tags is None:
12
+ self.tags = self._create_tags()
13
+ else:
14
+ self.tags = tags
15
  if self.logging:
16
  self._init_processor()
17
 
18
+ def _create_tags(self):
19
+ tags = []
20
+ tags.append(self.config["vectorstore"]["db_option"])
21
+ tags.append(self.config["llm_params"]["chat_profile"])
22
+ return tags
23
+
24
  def _init_processor(self):
25
  if self.chat_processor_type == "literalai":
26
  self.processor = LiteralaiChatProcessor(self.tags)
 
35
  else:
36
  pass
37
 
38
+ async def rag(self, user_query: str, chain):
39
+ user_query_dict = {"input": user_query}
40
+ # Define the base configuration
41
+ config = {
42
+ "configurable": {
43
+ "user_id": self.user["user_id"],
44
+ "conversation_id": self.user["session_id"],
45
+ "memory_window": self.llm_tutor.config["llm_params"]["memory_window"],
46
+ }
47
+ }
48
+
49
+ # Process the user query using the appropriate method
50
  if self.logging:
51
+ return await self.processor.rag(
52
+ user_query=user_query_dict, config=config, chain=chain
53
+ )
54
  else:
55
+ return chain.invoke(user_query=user_query_dict, config=config)
code/modules/chat_processor/literal_ai.py CHANGED
@@ -27,11 +27,11 @@ class LiteralaiChatProcessor(ChatProcessorBase):
27
  name="AI_Tutor",
28
  )
29
 
30
- async def rag(self, user_query: str, chain, cb):
31
  with self.literal_client.step(
32
  type="retrieval", name="RAG", thread_id=self.thread_id
33
  ) as step:
34
- step.input = {"question": user_query}
35
- res = await chain.acall(user_query, callbacks=[cb])
36
  step.output = res
37
  return res
 
27
  name="AI_Tutor",
28
  )
29
 
30
+ async def rag(self, user_query: dict, config: dict, chain):
31
  with self.literal_client.step(
32
  type="retrieval", name="RAG", thread_id=self.thread_id
33
  ) as step:
34
+ step.input = {"question": user_query["input"]}
35
+ res = await chain.invoke(user_query, config)
36
  step.output = res
37
  return res
code/modules/config/constants.py CHANGED
@@ -13,70 +13,69 @@ opening_message = f"Hey, What Can I Help You With?\n\nYou can me ask me question
13
 
14
  # Prompt Templates
15
 
16
- openai_prompt_template = """Use the following pieces of information to answer the user's question.
17
- If you don't know the answer, just say that you don't know.
18
-
19
- Context: {context}
20
- Question: {question}
21
-
22
- Only return the helpful answer below and nothing else.
23
- Helpful answer:
24
- """
25
-
26
- openai_prompt_template_with_history = """Use the following pieces of information to answer the user's question.
27
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
28
- Use the history to answer the question if you can.
29
- Chat History:
30
- {chat_history}
31
- Context: {context}
32
- Question: {question}
33
-
34
- Only return the helpful answer below and nothing else.
35
- Helpful answer:
36
- """
37
-
38
- tinyllama_prompt_template = """
39
- <|im_start|>system
40
- Assistant is an intelligent chatbot designed to help students with questions regarding the course. Only answer questions using the context below and if you're not sure of an answer, you can say "I don't know". Always give a breif and concise answer to the question. Use the history to answer the question if you can.
41
-
42
- Context:
43
- {context}
44
- <|im_end|>
45
- <|im_start|>user
46
- Question: Who is the instructor for this course?
47
- <|im_end|>
48
- <|im_start|>assistant
49
- The instructor for this course is Prof. Thomas Gardos.
50
- <|im_end|>
51
- <|im_start|>user
52
- Question: {question}
53
- <|im_end|>
54
- <|im_start|>assistant
55
- """
56
-
57
- tinyllama_prompt_template_with_history = """
58
- <|im_start|>system
59
- Assistant is an intelligent chatbot designed to help students with questions regarding the course. Only answer questions using the context below and if you're not sure of an answer, you can say "I don't know". Always give a breif and concise answer to the question.
60
-
61
- Chat History:
62
- {chat_history}
63
- Context:
64
- {context}
65
- <|im_end|>
66
- <|im_start|>user
67
- Question: Who is the instructor for this course?
68
- <|im_end|>
69
- <|im_start|>assistant
70
- The instructor for this course is Prof. Thomas Gardos.
71
- <|im_end|>
72
- <|im_start|>user
73
- Question: {question}
74
- <|im_end|>
75
- <|im_start|>assistant
76
- """
77
-
78
-
79
  # Model Paths
80
 
81
  LLAMA_PATH = "../storage/models/tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"
82
- MISTRAL_PATH = "storage/models/mistral-7b-v0.1.Q4_K_M.gguf"
 
13
 
14
  # Prompt Templates
15
 
16
+ OPENAI_REPHRASE_PROMPT = (
17
+ "You are someone that rephrases statements. Rephrase the student's question to add context from their chat history if relevant, ensuring it remains from the student's point of view. "
18
+ "Incorporate relevant details from the chat history to make the question clearer and more specific. "
19
+ "Do not change the meaning of the original statement, and maintain the student's tone and perspective. "
20
+ "If the question is conversational and doesn't require context, do not rephrase it. "
21
+ "Example: If the student previously asked about backpropagation in the context of deep learning and now asks 'what is it', rephrase to 'What is backpropagation.'. "
22
+ "Example: Do not rephrase if the user is asking something specific like 'cool, suggest a project with transformers to use as my final project' "
23
+ "Chat history: \n{chat_history}\n"
24
+ "Rephrase the following question only if necessary: '{input}'"
25
+ )
26
+
27
+ OPENAI_PROMPT_WITH_HISTORY = (
28
+ "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance. "
29
+ "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally. "
30
+ "Use chat history and context as guides but avoid repeating past responses. Provide links from the source_file metadata. Use the source context that is most relevant. "
31
+ "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n\n"
32
+ "Chat History:\n{chat_history}\n\n"
33
+ "Context:\n{context}\n\n"
34
+ "Answer the student's question below in a friendly, concise, and engaging manner. Use the context and history only if relevant, otherwise, engage in a free-flowing conversation.\n"
35
+ "Student: {input}\n"
36
+ "AI Tutor:"
37
+ )
38
+
39
+ OPENAAI_PROMPT_NO_HISTORY = (
40
+ "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance. "
41
+ "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally. "
42
+ "Provide links from the source_file metadata. Use the source context that is most relevant. "
43
+ "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n\n"
44
+ "Context:\n{context}\n\n"
45
+ "Answer the student's question below in a friendly, concise, and engaging manner. Use the context and history only if relevant, otherwise, engage in a free-flowing conversation.\n"
46
+ "Student: {input}\n"
47
+ "AI Tutor:"
48
+ )
49
+
50
+
51
+ TINYLLAMA_PROMPT_TEMPLATE_NO_HISTORY = (
52
+ "<|im_start|>system\n"
53
+ "Assistant is an intelligent chatbot designed to help students with questions regarding the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance.\n"
54
+ "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally.\n"
55
+ "Provide links from the source_file metadata. Use the source context that is most relevant.\n"
56
+ "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n"
57
+ "<|im_end|>\n\n"
58
+ "<|im_start|>user\n"
59
+ "Context:\n{context}\n\n"
60
+ "Question: {input}\n"
61
+ "<|im_end|>\n\n"
62
+ "<|im_start|>assistant"
63
+ )
64
+
65
+ TINYLLAMA_PROMPT_TEMPLATE_WITH_HISTORY = (
66
+ "<|im_start|>system\n"
67
+ "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance. "
68
+ "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally. "
69
+ "Use chat history and context as guides but avoid repeating past responses. Provide links from the source_file metadata. Use the source context that is most relevant. "
70
+ "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n"
71
+ "<|im_end|>\n\n"
72
+ "<|im_start|>user\n"
73
+ "Chat History:\n{chat_history}\n\n"
74
+ "Context:\n{context}\n\n"
75
+ "Question: {input}\n"
76
+ "<|im_end|>\n\n"
77
+ "<|im_start|>assistant"
78
+ )
79
  # Model Paths
80
 
81
  LLAMA_PATH = "../storage/models/tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"