log_dir: '../storage/logs' # str log_chunk_dir: '../storage/logs/chunks' # str device: 'cpu' # str [cuda, cpu] vectorstore: embedd_files: False # bool data_path: '../storage/data' # str url_file_path: '../storage/data/urls.txt' # str expand_urls: True # bool db_option : 'RAGatouille' # str [FAISS, Chroma, RAGatouille, RAPTOR] db_path : '../vectorstores' # str model : 'sentence-transformers/all-MiniLM-L6-v2' # str [sentence-transformers/all-MiniLM-L6-v2, text-embedding-ada-002'] search_top_k : 3 # int score_threshold : 0.2 # float faiss_params: # Not used as of now index_path: '../vectorstores/faiss.index' # str index_type: 'Flat' # str [Flat, HNSW, IVF] index_dimension: 384 # int index_nlist: 100 # int index_nprobe: 10 # int colbert_params: index_name: "new_idx" # str llm_params: use_history: True # bool memory_window: 3 # int llm_loader: 'openai' # str [local_llm, openai] openai_params: model: 'gpt-3.5-turbo-1106' # str [gpt-3.5-turbo-1106, gpt-4] local_llm_params: model: 'tiny-llama' temperature: 0.7 pdf_reader: 'gpt' # str [llama, pymupdf, gpt] chat_logging: log_chat: False # bool platform: 'literalai' splitter_options: use_splitter: True # bool split_by_token : True # bool remove_leftover_delimiters: True # bool remove_chunks: False # bool chunking_mode: 'semantic' # str [fixed, semantic] chunk_size : 300 # int chunk_overlap : 30 # int chunk_separators : ["\n\n", "\n", " ", ""] # list of strings front_chunks_to_remove : null # int or None last_chunks_to_remove : null # int or None delimiters_to_remove : ['\t', '\n', ' ', ' '] # list of strings