import chainlit.data as cl_data from modules.config.constants import ( LLAMA_PATH, LITERAL_API_KEY_LOGGING, LITERAL_API_URL, ) from modules.chat_processor.literal_ai import CustomLiteralDataLayer import json import yaml import os from typing import Any, Dict, no_type_check import chainlit as cl from modules.chat.llm_tutor import LLMTutor from modules.chat.helpers import get_sources import copy from typing import Optional from chainlit.types import ThreadDict USER_TIMEOUT = 60_000 SYSTEM = "System 🖥️" LLM = "LLM 🧠" AGENT = "Agent <>" YOU = "You 😃" ERROR = "Error 🚫" cl_data._data_layer = CustomLiteralDataLayer( api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL ) class Chatbot: def __init__(self): """ Initialize the Chatbot class. """ self.config = self._load_config() self.literal_client = cl_data._data_layer.client def _load_config(self): """ Load the configuration from a YAML file. """ with open("modules/config/config.yml", "r") as f: return yaml.safe_load(f) @no_type_check async def setup_llm(self): """ Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor. """ llm_settings = cl.user_session.get("llm_settings", {}) chat_profile, retriever_method, memory_window, llm_style = ( llm_settings.get("chat_model"), llm_settings.get("retriever_method"), llm_settings.get("memory_window"), llm_settings.get("llm_style"), ) chain = cl.user_session.get("chain") print(list(chain.store.values())) memory_list = cl.user_session.get( "memory", ( list(chain.store.values())[0].messages if len(chain.store.values()) > 0 else [] ), ) conversation_list = [] for message in memory_list: # Convert to dictionary if possible message_dict = message.to_dict() if hasattr(message, "to_dict") else message # Check if the type attribute is present as a key or attribute message_type = ( message_dict.get("type", None) if isinstance(message_dict, dict) else getattr(message, "type", None) ) # Check if content is present as a key or attribute message_content = ( message_dict.get("content", None) if isinstance(message_dict, dict) else getattr(message, "content", None) ) if message_type in ["ai", "ai_message"]: conversation_list.append( {"type": "ai_message", "content": message_content} ) elif message_type in ["human", "user_message"]: conversation_list.append( {"type": "user_message", "content": message_content} ) else: raise ValueError("Invalid message type") print("\n\n\n") print("history at setup_llm", conversation_list) print("\n\n\n") old_config = copy.deepcopy(self.config) self.config["vectorstore"]["db_option"] = retriever_method self.config["llm_params"]["memory_window"] = memory_window self.config["llm_params"]["llm_style"] = llm_style self.config["llm_params"]["llm_loader"] = chat_profile self.llm_tutor.update_llm( old_config, self.config ) # update only attributes that are changed self.chain = self.llm_tutor.qa_bot(memory=conversation_list) tags = [chat_profile, self.config["vectorstore"]["db_option"]] cl.user_session.set("chain", self.chain) cl.user_session.set("llm_tutor", self.llm_tutor) @no_type_check async def update_llm(self, new_settings: Dict[str, Any]): """ Update the LLM settings and reinitialize the LLM with the new settings. Args: new_settings (Dict[str, Any]): The new settings to update. """ cl.user_session.set("llm_settings", new_settings) await self.inform_llm_settings() await self.setup_llm() async def make_llm_settings_widgets(self, config=None): """ Create and send the widgets for LLM settings configuration. Args: config: The configuration to use for setting up the widgets. """ config = config or self.config await cl.ChatSettings( [ cl.input_widget.Select( id="chat_model", label="Model Name (Default GPT-3)", values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"], initial_index=[ "local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini", ].index(config["llm_params"]["llm_loader"]), ), cl.input_widget.Select( id="retriever_method", label="Retriever (Default FAISS)", values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"], initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index( config["vectorstore"]["db_option"] ), ), cl.input_widget.Slider( id="memory_window", label="Memory Window (Default 3)", initial=3, min=0, max=10, step=1, ), cl.input_widget.Switch( id="view_sources", label="View Sources", initial=False ), cl.input_widget.Switch( id="stream_response", label="Stream response", initial=False ), cl.input_widget.Select( id="llm_style", label="Type of Conversation (Default Normal)", values=["Normal", "ELI5", "Socratic"], initial_index=0, ), ] ).send() @no_type_check async def inform_llm_settings(self): """ Inform the user about the updated LLM settings and display them as a message. """ llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {}) llm_tutor = cl.user_session.get("llm_tutor") settings_dict = { "model": llm_settings.get("chat_model"), "retriever": llm_settings.get("retriever_method"), "memory_window": llm_settings.get("memory_window"), "num_docs_in_db": ( len(llm_tutor.vector_db) if llm_tutor and hasattr(llm_tutor, "vector_db") else 0 ), "view_sources": llm_settings.get("view_sources"), } await cl.Message( author=SYSTEM, content="LLM settings have been updated. You can continue with your Query!", elements=[ cl.Text( name="settings", display="side", content=json.dumps(settings_dict, indent=4), language="json", ), ], ).send() async def set_starters(self): """ Set starter messages for the chatbot. """ # Return Starters only if the chat is new try: thread = cl_data._data_layer.get_thread( cl.context.session.thread_id ) # see if the thread has any steps if thread.steps or len(thread.steps) > 0: return None except: return [ cl.Starter( label="recording on CNNs?", message="Where can I find the recording for the lecture on Transformers?", icon="/public/adv-screen-recorder-svgrepo-com.svg", ), cl.Starter( label="where's the slides?", message="When are the lectures? I can't find the schedule.", icon="/public/alarmy-svgrepo-com.svg", ), cl.Starter( label="Due Date?", message="When is the final project due?", icon="/public/calendar-samsung-17-svgrepo-com.svg", ), cl.Starter( label="Explain backprop.", message="I didn't understand the math behind backprop, could you explain it?", icon="/public/acastusphoton-svgrepo-com.svg", ), ] def rename(self, orig_author: str): """ Rename the original author to a more user-friendly name. Args: orig_author (str): The original author's name. Returns: str: The renamed author. """ rename_dict = {"Chatbot": "AI Tutor"} return rename_dict.get(orig_author, orig_author) async def start(self): """ Start the chatbot, initialize settings widgets, and display and load previous conversation if chat logging is enabled. """ await self.make_llm_settings_widgets(self.config) user = cl.user_session.get("user") self.user = { "user_id": user.identifier, "session_id": cl.context.session.thread_id, } print(self.user) memory = cl.user_session.get("memory", []) cl.user_session.set("user", self.user) self.llm_tutor = LLMTutor(self.config, user=self.user) self.chain = self.llm_tutor.qa_bot(memory=memory) cl.user_session.set("llm_tutor", self.llm_tutor) cl.user_session.set("chain", self.chain) async def stream_response(self, response): """ Stream the response from the LLM. Args: response: The response from the LLM. """ msg = cl.Message(content="") await msg.send() output = {} for chunk in response: if "answer" in chunk: await msg.stream_token(chunk["answer"]) for key in chunk: if key not in output: output[key] = chunk[key] else: output[key] += chunk[key] return output async def main(self, message): """ Process and Display the Conversation. Args: message: The incoming chat message. """ chain = cl.user_session.get("chain") print("\n\n\n") print( "session history", chain.get_session_history( self.user["user_id"], self.user["session_id"], self.config["llm_params"]["memory_window"], ), ) print("\n\n\n") llm_settings = cl.user_session.get("llm_settings", {}) view_sources = llm_settings.get("view_sources", False) stream = (llm_settings.get("stream_response", True)) or ( not self.config["llm_params"]["stream"] ) user_query_dict = {"input": message.content} # Define the base configuration chain_config = { "configurable": { "user_id": self.user["user_id"], "conversation_id": self.user["session_id"], "memory_window": self.config["llm_params"]["memory_window"], } } stream = False if stream: res = chain.stream(user_query=user_query_dict, config=chain_config) res = await self.stream_response(res) else: res = await chain.invoke(user_query=user_query_dict, config=chain_config) answer = res.get("answer", res.get("result")) with cl_data._data_layer.client.step( type="retrieval", name="RAG", thread_id=cl.context.session.thread_id, # tags=self.tags, ) as step: step.input = {"question": user_query_dict["input"]} step.output = { "chat_history": res.get("chat_history"), "context": res.get("context"), "answer": answer, "rephrase_prompt": res.get("rephrase_prompt"), "qa_prompt": res.get("qa_prompt"), } step.metadata = self.config answer_with_sources, source_elements, sources_dict = get_sources( res, answer, stream=stream, view_sources=view_sources ) await cl.Message( content=answer_with_sources, elements=source_elements, author=LLM ).send() async def on_chat_resume(self, thread: ThreadDict): steps = thread["steps"] # conversation_pairs = [] conversation_list = [] user_message = None k = self.config["llm_params"]["memory_window"] count = 0 print(steps) for step in reversed(steps): print(step["type"]) if step["name"] not in [SYSTEM]: if step["type"] == "user_message": conversation_list.append( {"type": "user_message", "content": step["output"]} ) elif step["type"] == "assistant_message": if step["name"] == LLM: conversation_list.append( {"type": "ai_message", "content": step["output"]} ) else: raise ValueError("Invalid message type") count += 1 if count >= 2 * k: # 2 * k to account for both user and assistant messages break conversation_list = conversation_list[::-1] print("\n\n\n") print("history at on_chat_resume", conversation_list) print(len(conversation_list)) print("\n\n\n") cl.user_session.set("memory", conversation_list) await self.start() @cl.oauth_callback def auth_callback( provider_id: str, token: str, raw_user_data: Dict[str, str], default_user: cl.User, ) -> Optional[cl.User]: return default_user chatbot = Chatbot() cl.set_starters(chatbot.set_starters) cl.author_rename(chatbot.rename) cl.on_chat_start(chatbot.start) cl.on_chat_resume(chatbot.on_chat_resume) cl.on_message(chatbot.main) cl.on_settings_update(chatbot.update_llm)