from langchain_openai import ChatOpenAI from langchain_community.llms import LlamaCpp import os from pathlib import Path from huggingface_hub import hf_hub_download class ChatModelLoader: def __init__(self, config): self.config = config self.huggingface_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") def _verify_model_cache(self, model_cache_path): hf_hub_download( repo_id=self.config["llm_params"]["local_llm_params"]["repo_id"], filename=self.config["llm_params"]["local_llm_params"]["filename"], cache_dir=model_cache_path, ) return str(list(Path(model_cache_path).glob("*/snapshots/*/*.gguf"))[0]) def load_chat_model(self): if self.config["llm_params"]["llm_loader"] in [ "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini", ]: llm = ChatOpenAI(model_name=self.config["llm_params"]["llm_loader"]) elif self.config["llm_params"]["llm_loader"] == "local_llm": n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU. model_path = self._verify_model_cache( self.config["llm_params"]["local_llm_params"]["model"] ) llm = LlamaCpp( model_path=model_path, n_batch=n_batch, n_ctx=2048, f16_kv=True, verbose=True, n_threads=2, temperature=self.config["llm_params"]["local_llm_params"][ "temperature" ], ) else: raise ValueError( f"Invalid LLM Loader: {self.config['llm_params']['llm_loader']}" ) return llm