import os import re import requests import pysrt from langchain_community.document_loaders import ( PyMuPDFLoader, Docx2txtLoader, YoutubeLoader, WebBaseLoader, TextLoader, ) from langchain_community.document_loaders import UnstructuredMarkdownLoader from llama_parse import LlamaParse from langchain.schema import Document import logging from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings from ragatouille import RAGPretrainedModel from langchain.chains import LLMChain from langchain_community.llms import OpenAI from langchain import PromptTemplate import json from concurrent.futures import ThreadPoolExecutor from urllib.parse import urljoin import html2text import bs4 import tempfile import PyPDF2 from modules.dataloader.pdf_readers.base import PDFReader from modules.dataloader.pdf_readers.llama import LlamaParser from modules.dataloader.pdf_readers.gpt import GPTParser try: from modules.dataloader.helpers import get_metadata, download_pdf_from_url from modules.config.constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY except: from dataloader.helpers import get_metadata, download_pdf_from_url from config.constants import OPENAI_API_KEY, LLAMA_CLOUD_API_KEY logger = logging.getLogger(__name__) BASE_DIR = os.getcwd() class HTMLReader: def __init__(self): pass def read_url(self, url): response = requests.get(url) if response.status_code == 200: return response.text else: logger.warning(f"Failed to download HTML from URL: {url}") return None def check_links(self, base_url, html_content): soup = bs4.BeautifulSoup(html_content, "html.parser") for link in soup.find_all("a"): href = link.get("href") if not href or href.startswith("#"): continue elif not href.startswith("https"): href = href.replace("http", "https") absolute_url = urljoin(base_url, href) link['href'] = absolute_url resp = requests.head(absolute_url) if resp.status_code != 200: logger.warning(f"Link {absolute_url} is broken. Status code: {resp.status_code}") return str(soup) def html_to_md(self, url, html_content): html_processed = self.check_links(url, html_content) markdown_content = html2text.html2text(html_processed) return markdown_content def read_html(self, url): html_content = self.read_url(url) if html_content: return self.html_to_md(url, html_content) else: return None class FileReader: def __init__(self, logger, kind): self.logger = logger self.kind = kind if kind == "llama": self.pdf_reader = LlamaParser() elif kind == "gpt": self.pdf_reader = GPTParser() else: self.pdf_reader = PDFReader() self.web_reader = HTMLReader() self.logger.info(f"Initialized FileReader with {kind} PDF reader and HTML reader") def extract_text_from_pdf(self, pdf_path): text = "" with open(pdf_path, "rb") as file: reader = PyPDF2.PdfReader(file) num_pages = len(reader.pages) for page_num in range(num_pages): page = reader.pages[page_num] text += page.extract_text() return text def read_pdf(self, temp_file_path: str): documents = self.pdf_reader.parse(temp_file_path) return documents def read_txt(self, temp_file_path: str): loader = TextLoader(temp_file_path, autodetect_encoding=True) return loader.load() def read_docx(self, temp_file_path: str): loader = Docx2txtLoader(temp_file_path) return loader.load() def read_srt(self, temp_file_path: str): subs = pysrt.open(temp_file_path) text = "" for sub in subs: text += sub.text return [Document(page_content=text)] def read_youtube_transcript(self, url: str): loader = YoutubeLoader.from_youtube_url( url, add_video_info=True, language=["en"], translation="en" ) return loader.load() def read_html(self, url: str): return [Document(page_content=self.web_reader.read_html(url))] def read_tex_from_url(self, tex_url): response = requests.get(tex_url) if response.status_code == 200: return [Document(page_content=response.text)] else: self.logger.error(f"Failed to fetch .tex file from URL: {tex_url}") return None class ChunkProcessor: def __init__(self, config, logger): self.config = config self.logger = logger self.document_data = {} self.document_metadata = {} self.document_chunks_full = [] if not config['vectorstore']['embedd_files']: self.load_document_data() if config["splitter_options"]["use_splitter"]: if config["splitter_options"]["chunking_mode"] == "fixed": if config["splitter_options"]["split_by_token"]: self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=config["splitter_options"]["chunk_size"], chunk_overlap=config["splitter_options"]["chunk_overlap"], separators=config["splitter_options"]["chunk_separators"], disallowed_special=(), ) else: self.splitter = RecursiveCharacterTextSplitter( chunk_size=config["splitter_options"]["chunk_size"], chunk_overlap=config["splitter_options"]["chunk_overlap"], separators=config["splitter_options"]["chunk_separators"], disallowed_special=(), ) else: self.splitter = SemanticChunker( OpenAIEmbeddings(), breakpoint_threshold_type="percentile" ) else: self.splitter = None self.logger.info("ChunkProcessor instance created") def remove_delimiters(self, document_chunks: list): for chunk in document_chunks: for delimiter in self.config["splitter_options"]["delimiters_to_remove"]: chunk.page_content = re.sub(delimiter, " ", chunk.page_content) return document_chunks def remove_chunks(self, document_chunks: list): front = self.config["splitter_options"]["front_chunk_to_remove"] end = self.config["splitter_options"]["last_chunks_to_remove"] for _ in range(front): del document_chunks[0] for _ in range(end): document_chunks.pop() return document_chunks def process_chunks( self, documents, file_type="txt", source="", page=0, metadata={} ): if file_type == "pdf": document_chunks = documents else: documents = [Document(page_content=documents, source=source, page=page)] document_chunks = self.splitter.split_documents(documents) # add the source and page number back to the metadata for chunk in document_chunks: chunk.metadata["source"] = source chunk.metadata["page"] = page # add the metadata extracted from the document for key, value in metadata.items(): chunk.metadata[key] = value if self.config["splitter_options"]["remove_leftover_delimiters"]: document_chunks = self.remove_delimiters(document_chunks) if self.config["splitter_options"]["remove_chunks"]: document_chunks = self.remove_chunks(document_chunks) return document_chunks def chunk_docs(self, file_reader, uploaded_files, weblinks): addl_metadata = get_metadata( "https://dl4ds.github.io/sp2024/lectures/", "https://dl4ds.github.io/sp2024/schedule/", ) # For any additional metadata with ThreadPoolExecutor() as executor: executor.map( self.process_file, uploaded_files, range(len(uploaded_files)), [file_reader] * len(uploaded_files), [addl_metadata] * len(uploaded_files), ) executor.map( self.process_weblink, weblinks, range(len(weblinks)), [file_reader] * len(weblinks), [addl_metadata] * len(weblinks), ) document_names = [ f"{file_name}_{page_num}" for file_name, pages in self.document_data.items() for page_num in pages.keys() ] documents = [ page for doc in self.document_data.values() for page in doc.values() ] document_metadata = [ page for doc in self.document_metadata.values() for page in doc.values() ] self.save_document_data() self.logger.info( f"Total document chunks extracted: {len(self.document_chunks_full)}" ) return self.document_chunks_full, document_names, documents, document_metadata def process_documents( self, documents, file_path, file_type, metadata_source, addl_metadata ): file_data = {} file_metadata = {} for doc in documents: # if len(doc.page_content) <= 400: # better approach to filter out non-informative documents # continue page_num = doc.metadata.get("page", 0) file_data[page_num] = doc.page_content metadata = ( addl_metadata.get(file_path, {}) if metadata_source == "file" else {"source": file_path, "page": page_num} ) file_metadata[page_num] = metadata if self.config["vectorstore"]["db_option"] not in ["RAGatouille"]: document_chunks = self.process_chunks( doc.page_content, file_type, source=file_path, page=page_num, metadata=metadata, ) self.document_chunks_full.extend(document_chunks) self.document_data[file_path] = file_data self.document_metadata[file_path] = file_metadata def process_file(self, file_path, file_index, file_reader, addl_metadata): file_name = os.path.basename(file_path) file_type = file_name.split(".")[-1] read_methods = { "pdf": file_reader.read_pdf, "txt": file_reader.read_txt, "docx": file_reader.read_docx, "srt": file_reader.read_srt, "tex": file_reader.read_tex_from_url, } if file_type not in read_methods: self.logger.warning(f"Unsupported file type: {file_type}") return try: if file_path in self.document_data: self.logger.warning(f"File {file_name} already processed") documents = [Document(page_content=content) for content in self.document_data[file_path].values()] else: documents = read_methods[file_type](file_path) self.process_documents( documents, file_path, file_type, "file", addl_metadata ) except Exception as e: self.logger.error(f"Error processing file {file_name}: {str(e)}") def process_weblink(self, link, link_index, file_reader, addl_metadata): if link in self.document_data: return self.logger.info(f"Reading link {link_index + 1} : {link}") try: if "youtube" in link: documents = file_reader.read_youtube_transcript(link) else: documents = file_reader.read_html(link) self.process_documents(documents, link, "txt", "link", addl_metadata) except Exception as e: self.logger.error(f"Error Reading link {link_index + 1} : {link}: {str(e)}") def save_document_data(self): if not os.path.exists(f"{self.config['log_chunk_dir']}/docs"): os.makedirs(f"{self.config['log_chunk_dir']}/docs") self.logger.info( f"Creating directory {self.config['log_chunk_dir']}/docs for document data" ) self.logger.info( f"Saving document content to {self.config['log_chunk_dir']}/docs/doc_content.json" ) if not os.path.exists(f"{self.config['log_chunk_dir']}/metadata"): os.makedirs(f"{self.config['log_chunk_dir']}/metadata") self.logger.info( f"Creating directory {self.config['log_chunk_dir']}/metadata for document metadata" ) self.logger.info( f"Saving document metadata to {self.config['log_chunk_dir']}/metadata/doc_metadata.json" ) with open( f"{self.config['log_chunk_dir']}/docs/doc_content.json", "w" ) as json_file: json.dump(self.document_data, json_file, indent=4) with open( f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "w" ) as json_file: json.dump(self.document_metadata, json_file, indent=4) def load_document_data(self): with open( f"{self.config['log_chunk_dir']}/docs/doc_content.json", "r" ) as json_file: self.document_data = json.load(json_file) with open( f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "r" ) as json_file: self.document_metadata = json.load(json_file) self.logger.info( f"Loaded document content from {self.config['log_chunk_dir']}/docs/doc_content.json. Total documents: {len(self.document_data)}" ) class DataLoader: def __init__(self, config, logger=None): self.file_reader = FileReader(logger=logger, kind=config["llm_params"]["pdf_reader"]) self.chunk_processor = ChunkProcessor(config, logger=logger) def get_chunks(self, uploaded_files, weblinks): return self.chunk_processor.chunk_docs( self.file_reader, uploaded_files, weblinks ) if __name__ == "__main__": import yaml logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) with open("../code/modules/config/config.yml", "r") as f: config = yaml.safe_load(f) STORAGE_DIR = os.path.join(BASE_DIR, config['vectorstore']["data_path"]) uploaded_files = [ os.path.join(STORAGE_DIR, file) for file in os.listdir(STORAGE_DIR) if file != "urls.txt" ] data_loader = DataLoader(config, logger=logger) document_chunks, document_names, documents, document_metadata = ( data_loader.get_chunks( ["https://dl4ds.github.io/sp2024/static_files/lectures/05_loss_functions_v2.pdf"], [], ) ) print(document_names[:5]) print(len(document_chunks))