import os import re import requests import pysrt from langchain_community.document_loaders import ( PyMuPDFLoader, Docx2txtLoader, YoutubeLoader, WebBaseLoader, TextLoader, ) from langchain_community.document_loaders import UnstructuredMarkdownLoader from llama_parse import LlamaParse from langchain.schema import Document import logging from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings from ragatouille import RAGPretrainedModel from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain import PromptTemplate try: from modules.helpers import get_lecture_metadata except: from helpers import get_lecture_metadata logger = logging.getLogger(__name__) class PDFReader: def __init__(self): pass def get_loader(self, pdf_path): loader = PyMuPDFLoader(pdf_path) return loader def get_documents(self, loader): return loader.load() class FileReader: def __init__(self): self.pdf_reader = PDFReader() def extract_text_from_pdf(self, pdf_path): text = "" with open(pdf_path, "rb") as file: reader = PyPDF2.PdfReader(file) num_pages = len(reader.pages) for page_num in range(num_pages): page = reader.pages[page_num] text += page.extract_text() return text def download_pdf_from_url(self, pdf_url): response = requests.get(pdf_url) if response.status_code == 200: with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(response.content) temp_file_path = temp_file.name return temp_file_path else: print("Failed to download PDF from URL:", pdf_url) return None def read_pdf(self, temp_file_path: str): loader = self.pdf_reader.get_loader(temp_file_path) documents = self.pdf_reader.get_documents(loader) return documents def read_txt(self, temp_file_path: str): loader = TextLoader(temp_file_path, autodetect_encoding=True) return loader.load() def read_docx(self, temp_file_path: str): loader = Docx2txtLoader(temp_file_path) return loader.load() def read_srt(self, temp_file_path: str): subs = pysrt.open(temp_file_path) text = "" for sub in subs: text += sub.text return [Document(page_content=text)] def read_youtube_transcript(self, url: str): loader = YoutubeLoader.from_youtube_url( url, add_video_info=True, language=["en"], translation="en" ) return loader.load() def read_html(self, url: str): loader = WebBaseLoader(url) return loader.load() class ChunkProcessor: def __init__(self, config): self.config = config if config["splitter_options"]["use_splitter"]: if config["splitter_options"]["split_by_token"]: self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=config["splitter_options"]["chunk_size"], chunk_overlap=config["splitter_options"]["chunk_overlap"], separators=config["splitter_options"]["chunk_separators"], disallowed_special=(), ) else: self.splitter = RecursiveCharacterTextSplitter( chunk_size=config["splitter_options"]["chunk_size"], chunk_overlap=config["splitter_options"]["chunk_overlap"], separators=config["splitter_options"]["chunk_separators"], disallowed_special=(), ) else: self.splitter = None logger.info("ChunkProcessor instance created") # def extract_metadata(self, document_content): # llm = OpenAI() # prompt_template = PromptTemplate( # input_variables=["document_content"], # template="Extract metadata for this document:\n\n{document_content}\n\nMetadata:", # ) # chain = LLMChain(llm=llm, prompt=prompt_template) # metadata = chain.run(document_content=document_content) # return metadata def remove_delimiters(self, document_chunks: list): for chunk in document_chunks: for delimiter in self.config["splitter_options"]["delimiters_to_remove"]: chunk.page_content = re.sub(delimiter, " ", chunk.page_content) return document_chunks def remove_chunks(self, document_chunks: list): front = self.config["splitter_options"]["front_chunk_to_remove"] end = self.config["splitter_options"]["last_chunks_to_remove"] for _ in range(front): del document_chunks[0] for _ in range(end): document_chunks.pop() logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}") return document_chunks def process_chunks( self, documents, file_type="txt", source="", page=0, metadata={} ): documents = [Document(page_content=documents, source=source, page=page)] if file_type == "txt": document_chunks = self.splitter.split_documents(documents) elif file_type == "pdf": document_chunks = documents # Full page for now # add the source and page number back to the metadata for chunk in document_chunks: chunk.metadata["source"] = source chunk.metadata["page"] = page # add the metadata extracted from the document for key, value in metadata.items(): chunk.metadata[key] = value if self.config["splitter_options"]["remove_leftover_delimiters"]: document_chunks = self.remove_delimiters(document_chunks) if self.config["splitter_options"]["remove_chunks"]: document_chunks = self.remove_chunks(document_chunks) return document_chunks def get_chunks(self, file_reader, uploaded_files, weblinks): self.document_chunks_full = [] self.parent_document_names = [] self.child_document_names = [] self.documents = [] self.document_metadata = [] lecture_metadata = get_lecture_metadata( "https://dl4ds.github.io/sp2024/lectures/", "https://dl4ds.github.io/sp2024/schedule/", ) # TODO: Use more efficiently for file_index, file_path in enumerate(uploaded_files): file_name = os.path.basename(file_path) file_type = file_name.split(".")[-1].lower() # try: if file_type == "pdf": documents = file_reader.read_pdf(file_path) elif file_type == "txt": documents = file_reader.read_txt(file_path) elif file_type == "docx": documents = file_reader.read_docx(file_path) elif file_type == "srt": documents = file_reader.read_srt(file_path) else: logger.warning(f"Unsupported file type: {file_type}") continue # full_text = "" # for doc in documents: # full_text += doc.page_content # break # getting only first page for now # extracted_metadata = self.extract_metadata(full_text) for doc in documents: page_num = doc.metadata.get("page", 0) self.documents.append(doc.page_content) self.document_metadata.append({"source": file_path, "page": page_num}) if "lecture" in file_path.lower(): metadata = lecture_metadata.get(file_path, {}) metadata["source_type"] = "lecture" self.document_metadata[-1].update(metadata) else: metadata = {"source_type": "other"} self.child_document_names.append(f"{file_name}_{page_num}") self.parent_document_names.append(file_name) if self.config["embedding_options"]["db_option"] not in ["RAGatouille"]: document_chunks = self.process_chunks( self.documents[-1], file_type, source=file_path, page=page_num, metadata=metadata, ) self.document_chunks_full.extend(document_chunks) # except Exception as e: # logger.error(f"Error processing file {file_name}: {str(e)}") self.process_weblinks(file_reader, weblinks) logger.info( f"Total document chunks extracted: {len(self.document_chunks_full)}" ) return ( self.document_chunks_full, self.child_document_names, self.documents, self.document_metadata, ) def process_weblinks(self, file_reader, weblinks): if weblinks[0] != "": logger.info(f"Splitting weblinks: total of {len(weblinks)}") for link_index, link in enumerate(weblinks): try: logger.info(f"\tSplitting link {link_index+1} : {link}") if "youtube" in link: documents = file_reader.read_youtube_transcript(link) else: documents = file_reader.read_html(link) for doc in documents: page_num = doc.metadata.get("page", 0) self.documents.append(doc.page_content) self.document_metadata.append( {"source": link, "page": page_num} ) self.child_document_names.append(f"{link}") self.parent_document_names.append(link) if self.config["embedding_options"]["db_option"] not in [ "RAGatouille" ]: document_chunks = self.process_chunks( self.documents[-1], "txt", source=link, page=0, metadata={"source_type": "webpage"}, ) self.document_chunks_full.extend(document_chunks) except Exception as e: logger.error( f"Error splitting link {link_index+1} : {link}: {str(e)}" ) class DataLoader: def __init__(self, config): self.file_reader = FileReader() self.chunk_processor = ChunkProcessor(config) def get_chunks(self, uploaded_files, weblinks): return self.chunk_processor.get_chunks( self.file_reader, uploaded_files, weblinks )