from modules.config.constants import * import chainlit as cl from langchain_core.prompts import PromptTemplate from langchain_core.prompts import ChatPromptTemplate def get_sources(res, answer, view_sources=False): source_elements = [] source_dict = {} # Dictionary to store URL elements for idx, source in enumerate(res["context"]): source_metadata = source.metadata url = source_metadata.get("source", "N/A") score = source_metadata.get("score", "N/A") page = source_metadata.get("page", 1) lecture_tldr = source_metadata.get("tldr", "N/A") lecture_recording = source_metadata.get("lecture_recording", "N/A") suggested_readings = source_metadata.get("suggested_readings", "N/A") date = source_metadata.get("date", "N/A") source_type = source_metadata.get("source_type", "N/A") url_name = f"{url}_{page}" if url_name not in source_dict: source_dict[url_name] = { "text": source.page_content, "url": url, "score": score, "page": page, "lecture_tldr": lecture_tldr, "lecture_recording": lecture_recording, "suggested_readings": suggested_readings, "date": date, "source_type": source_type, } else: source_dict[url_name]["text"] += f"\n\n{source.page_content}" # First, display the answer full_answer = "**Answer:**\n" full_answer += answer if view_sources: # Then, display the sources # check if the answer has sources if len(source_dict) == 0: full_answer += "\n\n**No sources found.**" return full_answer, source_elements, source_dict else: full_answer += "\n\n**Sources:**\n" for idx, (url_name, source_data) in enumerate(source_dict.items()): full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n" name = f"Source {idx + 1} Text\n" full_answer += name source_elements.append( cl.Text(name=name, content=source_data["text"], display="side") ) # Add a PDF element if the source is a PDF file if source_data["url"].lower().endswith(".pdf"): name = f"Source {idx + 1} PDF\n" full_answer += name pdf_url = f"{source_data['url']}#page={source_data['page']+1}" source_elements.append( cl.Pdf(name=name, url=pdf_url, display="side") ) full_answer += "\n**Metadata:**\n" for idx, (url_name, source_data) in enumerate(source_dict.items()): full_answer += f"\nSource {idx + 1} Metadata:\n" source_elements.append( cl.Text( name=f"Source {idx + 1} Metadata", content=f"Source: {source_data['url']}\n" f"Page: {source_data['page']}\n" f"Type: {source_data['source_type']}\n" f"Date: {source_data['date']}\n" f"TL;DR: {source_data['lecture_tldr']}\n" f"Lecture Recording: {source_data['lecture_recording']}\n" f"Suggested Readings: {source_data['suggested_readings']}\n", display="side", ) ) return full_answer, source_elements, source_dict def get_prompt(config, prompt_type): llm_params = config["llm_params"] llm_loader = llm_params["llm_loader"] use_history = llm_params["use_history"] if prompt_type == "qa": if llm_loader == "openai": return ( OPENAI_PROMPT_WITH_HISTORY if use_history else OPENAI_PROMPT_NO_HISTORY ) elif ( llm_loader == "local_llm" and llm_params.get("local_llm_params") == "tiny-llama" ): return ( TINYLLAMA_PROMPT_TEMPLATE_WITH_HISTORY if use_history else TINYLLAMA_PROMPT_TEMPLATE_NO_HISTORY ) elif prompt_type == "rephrase": prompt = ChatPromptTemplate.from_messages( [ ("system", OPENAI_REPHRASE_PROMPT), ("human", "{question}, {chat_history}"), ] ) return OPENAI_REPHRASE_PROMPT return None